
MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8
Rev. 13 — 19 January 2024 User guide

Document information
Information Content

Keywords MCUXpresso Secure Provisioning Tool

Abstract MCUXpresso Secure Provisioning Tool (SEC) is a GUI tool made to simplify the generation
and provisioning of bootable executables on NXP MCU platforms. It is built upon the proven
security enablement toolset provided by NXP and takes advantage of the breadth of programming
interfaces provided by the BootROM library.

https://www.nxp.com

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

1 Introduction

MCUXpresso Secure Provisioning Tool (SEC) is a GUI tool made to simplify the generation and provisioning
of bootable executables on NXP MCU platforms. It is built upon the proven security enablement toolset provided
by NXP and takes advantage of the breadth of programming interfaces provided by the BootROM. New users
should find it easier to prepare, flash, and secure images, while experienced users rediscover features from the
existing toolset (sdphost, blhost, nxpimage, and so on) under a friendlier GUI. Experienced users can further
customize secure provisioning flows by modifying scripts generated by the tool.

Figure 1. MCUXpresso Secure Provisioning Tool

2 Features

Features of the MCUXpresso Secure Provisioning Tool include:

• Support target connectivity via UART, USB-HID, SPI, and I2C serial download modes
• Support multiple user application image formats (bin, hex, srec, elf).
• Automated conversion of bare images to bootable images
• Downloading a bootable image in the target boot device
• Customization of booting from external flash either using GUI or predefined flash configuration blocks
• Generation of certificate trees for image signing and encryption, or use of user-supplied certificates
• Optional signature provider that allows customizing integration of HSM module for signing the image
• Support for development (unsigned and CRC) boot types
• Support for authenticated (signed) and encrypted boot types
• Key provisioning and fusing as dictated by boot type
• Advanced OTP/PFR/IFR configuration
• Trust provisioning and device HSM for production in factory
• Dual boot ping pong page
• Command-line interface for customized boot flows
• Simple Flash Programming tool
• Support for debug authentication
• SB editor tool for creation of custom SB files

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
2 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

• Manufacturing tool to support parallel provisioning operations in the factory
• Additional command-line utilities for low-level interaction with the device
• Integrated Development Environments supported: MCUXpresso IDE, Keil MDK 5, IAR Embedded Workbench
• Windows 64-bit, Linux 64-bit, and MacOS hosts

Note: The complete list of supported devices and features can be found in the document "SEC-Tool-
Features.xls" attached to this user guide.

3 Terms and definitions

Term Definition

AES Advanced Encryption Standard

AES-128 Rijndael cipher with block and key sizes of 128 bits

BEE Bus Encryption Engine

Block cipher Encryption algorithm that works on blocks of N={64, 128, ...} bits

CA Certificate Authority, the holder of a private key used to certify public keys

CAAM Cryptographic Acceleration and Assurance Module, an accelerator for encryption,
stream cipher, and hashing algorithms, with a random number generator and
runtime integrity checker

CBC Cipher Block Chaining, a cipher mode that uses the feedback between the
ciphertext blocks

CBC-MAC A message authentication code computed with a block cipher

CFPA Customer In-field Programmable Area

Cipher block The minimum amount of data on which a block cipher operates

Ciphertext Encrypted data

CMPA Customer Manufacturing/Factory Programmable Area

CMS Cryptographic Message Syntax, a general format for data that may have
cryptography applied to it, such as digital signatures and digital envelopes. HAB
uses the CMS as a container holding PKCS#1 signatures.

CSF Command Sequence File, a binary data structure interpreted by the HAB to guide
authentication operations

CST Code Signing Tool, an application running on a build host to generate a CSF and
associated digital signatures

DA Debug Authentication

DAP Debug Authentication Protocol

DCD Device Configuration Data, a binary table used by the ROM code to configure the
device at an early boot stage

DCP Data coprocessor, an accelerator for AES encryption and SHA hashing algorithms

DEK Data encryption key, a one-time session key used to encrypt the bulk of the boot
image

DUK Device Unique Key

ECB Electronic Code Book, a cipher mode with no feedback between the ciphertext
blocks

Table 1. Terms and definitions

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
3 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Term Definition

EKIB Encrypted Key Info Block

EPRDB Encrypted Protection Region Descriptor Block

FAC Flash Access Controlled

FCB Flash Configuration Block or Flash Control Block

HAB High Assurance Boot, a software library executed in internal ROM on the Freescale
processor at boot time that, among other things, authenticates software in external
memory by verifying digital signatures in accordance with a CSF. This document is
strictly limited to processors running HABv4.

Hash Digest computation algorithm

HSM Hardware System Module

IEE Inline Encryption Engine

IFR Information Flash Region

ISK Image Signing Key

ISP In-system programming, a mode in which the processor can be programmed
directly into the product.

IVT Image Vector Table

KEK Key Encryption Key, used to encrypt a session key or DEK

KeyBlob KeyBlob is a data structure that wraps the key and the counter and the range of
image decryption using AESCTR (AES in Counter mode) algorithm

KIB Key Info Block with KEY and IV for AES128-CBC, recall key and IV used in PRDB
wrap and unwrap is defined as key info block

MAC Message Authentication Code. Provides integrity and authentication checks

Message digest A unique value computed from the data using a hash algorithm. Provides only an
integrity check (unless encrypted).

NDA Non-disclosure Agreement

OEM Original Equipment Manufacturer

OS Operating System

OTFAD On-The-Fly AES Decryption

OTP One-Time Programmable. OTP hardware includes masked ROM, and electrically
programmable fuses (eFuses).

OTPMK One-Time Programmable Master Key

PFR Protected Flash Region

PKCS#1 Standard specifying the use of the RSA algorithm. For more information,
see https://en.wikipedia.org/wiki/PKCS_1 and https://web.archive.org/
web/20051029040347/http://rsasecurity.com/rsalabs/node.asp?id=2125.

PKI Public Key Infrastructure, a hierarchy of public key certificates in which each
certificate (except the root certificate) can be verified using the public key above it.

Plaintext Unencrypted data

PRDB Protection Region Descriptor Block recalls the counter and the range of image
decryption using the AES-CTR algorithm.

Table 1. Terms and definitions...continued

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
4 / 129

https://en.wikipedia.org/wiki/PKCS_1
https://web.archive.org/web/20051029040347/http://rsasecurity.com/rsalabs/node.asp?id=2125
https://web.archive.org/web/20051029040347/http://rsasecurity.com/rsalabs/node.asp?id=2125

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Term Definition

PUF Physical Unclonable Function

Rijndael Block cipher chosen by the US Government to replace DES. Pronounced rain-dahl.

ROMCFG ROM Bootloader configurations

RoT Root of Trust

RSA A public key cryptography algorithm developed by Rivest, Shamir, and Adleman.
Accelerator (including hash acceleration) is found on some processors.

SDP Serial Download Protocol, also called UART/USB Serial Download mode. IT allows
code provisioning through UART or USB during production and development
phases.

SEC Tool Secure Provisioning Tool

Session key Encryption key is generated at the time of encryption. Only ever used once.

SHA-1 Hash algorithm that produces a 160-bit message digest

SNVS Secure Non-Volatile Storage

SPSDK Secure Provisioning SDK, an open source Python library and command-line tools
for secure provisioning of NXP MCUs.

SRK Super Root Key, an RSA key pair that forms the start of the boot-time
authentication chain. The hash of the SRK public key is embedded in the processor
using OTP hardware. The SRK private key is held by the CA. Unless explicitly
noted, SRK in this document refers to the public key only.

UID Unique Identifier, a unique value (such as a serial number) assigned to each
processor during fabrication

XIP Execute-In-Place refers to a software image that is executed directly from its non-
volatile storage location rather than first being copied to volatile memory.

XMCD External Memory Configuration Data

Table 1. Terms and definitions...continued

4 Installation

This chapter describes the procedure required to install SEC on Windows, MacOS, and Linux operating
systems. For the list of supported operating systems, refer to Release Notes (https://www.nxp.com/
design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-secure-
provisioning-tool:MCUXPRESSO-SECURE-PROVISIONING?tid=vanMCUXPRESSO-SECURE-
PROVISIONING#documentation). Debug probe drivers are not part of the installers, see Release Notes.

4.1 Minimum system requirements
The tool runs on Microsoft(R) Windows(R), Ubuntu, and Mac OS X operating systems. The detailed system
requirements are specified in ReleaseNotes.txt.

4.2 Windows
To install SEC as a desktop application on a local host, perform the following steps:

1. Visit the NXP website (https://www.nxp.com/mcuxpresso/secure) to download the SEC installer for
Windows.

2. Double-click the MCUXpresso_Secure_Provisioning_<version>.exe installer to begin installation.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
5 / 129

https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-secure-provisioning-tool:MCUXPRESSO-SECURE-PROVISIONING?tid=vanMCUXPRESSO-SECURE-PROVISIONING#documentation
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-secure-provisioning-tool:MCUXPRESSO-SECURE-PROVISIONING?tid=vanMCUXPRESSO-SECURE-PROVISIONING#documentation
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-secure-provisioning-tool:MCUXPRESSO-SECURE-PROVISIONING?tid=vanMCUXPRESSO-SECURE-PROVISIONING#documentation
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-secure-provisioning-tool:MCUXPRESSO-SECURE-PROVISIONING?tid=vanMCUXPRESSO-SECURE-PROVISIONING#documentation
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-secure-provisioning-tool:MCUXPRESSO-SECURE-PROVISIONING?tid=vanMCUXPRESSO-SECURE-PROVISIONING#documentation
https://www.nxp.com/mcuxpresso/secure

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

3. On the first page of the wizard, click Next.

Figure 2. MCUXpresso Secure Provisioning Tool Setup
4. On the End-User License Agreement page of the wizard, select I accept the terms of the License

Agreement and click Next.

Figure 3. Accepting the end-user license agreement
5. On the Select Installation Folder page of the wizard, select Browse and navigate to a destination folder

you want to install the SEC to and click Next.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
6 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Figure 4. Selecting installation folder
6. On the Configure Shortcuts page of the wizard, select shortcuts you want to be created for SEC and click

Next.

Figure 5. Configuring shortcuts
7. On the Ready to Install page of the wizard, select Install.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
7 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Figure 6. Ready to install
The setup begins the installation.
Note: If you want to review or change any of your installation settings, click Back. Click Cancel to exit the
wizard.
The installer prompts you when the installation completes.

Figure 7. Installing MCUXpresso Secure Provisioning Tool
8. Click Finish to close and exit the setup wizard.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
8 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Figure 8. Completing installation
9. To start using SEC, run the tool from the desktop shortcut on the desktop or from the Start menu. You can

also navigate to the <product installation folder>\bin\ folder and launch the securep.exe or launch the
shortcut in the <product installation folder>.

4.2.1 Windows CLI

It is possible to install the SEC tool using the command line. In this case, use Run the installer with the
following parameters:

MCUXpresso_Secure_Provisioning_v<version>.exe /exenoui /qn

4.3 MacOS
To install SEC as a desktop application on a local host, perform the following steps:

1. Visit the NXP website (https://www.nxp.com/mcuxpresso/secure) to download the SEC installer for MacOS.
Based on your computer, select either an installer for an Intel or Apple M processor.

2. Double-click the MCUXpresso_Secure_Provisioning_<version>.pkg to start the Install
MCUXpresso Secure Provisioning Tool wizard.
Note: When you try to open the MacOS installer, you may receive an error. To avoid it, manually select the
option Mac App Store and identified developers in the Security & Privacy menu.

3. On the Introduction page, click Continue.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
9 / 129

https://www.nxp.com/mcuxpresso/secure

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Figure 9. Introduction
4. On the Software License Agreement page, click Continue.

Figure 10. Software license agreement
5. Confirm that you have read and agreed to the terms of the Software License Agreement by clicking Agree.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
10 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Figure 11. Accepting software license agreement
6. On the Destination Select page, click the green arrow to select the installation folder, and once done, click

Continue.

Figure 12. Select destination
7. On the Installation Type page, click Install.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
11 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Figure 13. Installation type
8. Type in your login credentials to continue with the installation and click Install Software.

Figure 14. Install software
9. Click Continue.

Unless errors are reported, the Summary page confirms that the installation was completed successfully.
10. On the Summary page, click Close.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
12 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Figure 15. Summary

4.3.1 Enabling USB connection on MacOS

During the first connection to the target by USB, MacOS X Catalina blocks the access to USB HID devices as a
security measure and the operation will fail with error. In MacOS 13 (Ventura), this works differently and these
steps are not needed.

Perform the following steps to enable USB connection:

1. In the OS security alert message box, select Open System Preferences.

Figure 16. Open System Preferences
2. Unlock Privacy preferences to enable changes.
3. Select MCUXpresso Secure Provisioning <version>, confirm, and quit the application.

Figure 17. Confirm change
4. Lock Privacy preferences.
5. If the application was not closed, close it manually.
6. Start the application and proceed with the operation.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
13 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

4.4 Linux
Installation of SEC on Ubuntu can be done in the Terminal.

1. Visit the NXP website (https://www.nxp.com/mcuxpresso/secure) to download the SEC installer for Linux.
2. Open the terminal and change the directory where the installer is downloaded, install using dpkg with sudo.

$ cd ~/Downloads
$ sudo dpkg -i ./mcuxpresso-secure-provisioning-<version>_<architecture>.deb

If the command executed with sudo is successful, the setup will install the SEC in the dedicated folder /opt/
nxp/.

Note:

For trust provisioning, additional packages are necessary for the Smart Card access:

$ sudo apt install libpcsclite1 pcscd pcsc-tools

4.5 Uninstalling

4.5.1 Windows

Secure Provisioning Tool can be uninstalled in the following ways:

• by using Settings | Apps & features

Figure 18. Settings
• by navigating into the %APPDATA%\NXP Semiconductors and then finding the appropriate MSI installer in

the MCUXpresso Secure Provisioning x.y.z.zz\install\ folder and choosing the Remove option
in the wizard.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
14 / 129

https://www.nxp.com/mcuxpresso/secure

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Figure 19. MCUXpresso Secure Provisioning setup wizard

4.5.2 MacOS

Secure Provisioning Tool can be uninstalled by using Finder, navigating to Applications, and moving
MCUX_Provi_vX into the Trash.

Figure 20. Applications

4.5.3 Linux

Secure Provisioning Tool can be uninstalled by using the Debian package manager.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
15 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

In the Terminal you can get the list of secure provisioning tools with the package names:

$ dpkg --list "mcuxpresso-secure-provisioning*"
Desired=Unknown/Install/Remove/Purge/Hold
| Status=Not/Inst/Conf-files/Unpacked/halF-conf/Half-inst/trig-aWait/Trig-pend
|/ Err?=(none)/Reinst-required (Status,Err: uppercase=bad)
||/ Name Version Architecture
 Description
+++-=======================================-============-============-
====================================
rc mcuxpresso-secure-provisioning-tools-v1 1.0.1 amd64 MCUXpresso
 Secure Provisioning Tools
rc mcuxpresso-secure-provisioning-v2 2.0 amd64 MCUXpresso
 Secure Provisioning
rc mcuxpresso-secure-provisioning-v2.1 2.1 amd64 MCUXpresso
 Secure Provisioning
ii mcuxpresso-secure-provisioning-v3 3.0 amd64 MCUXpresso
 Secure Provisioning
ii mcuxpresso-secure-provisioning-v3.1 3.1 amd64 MCUXpresso
 Secure Provisioning
ii mcuxpresso-secure-provisioning-v4 4.0 amd64 MCUXpresso
 Secure Provisioning

Now the desired version can be uninstalled:
$ sudo dpkg -r mcuxpresso-secure-provisioning-v4

Several versions can be uninstalled at once:

sudo dpkg --remove mcuxpresso-secure-provisioning-v2 mcuxpresso-secure-
provisioning-v2.1

When additional packages have been installed for TP, you might consider to remove them as well:

$ sudo apt remove libpcsclite1 pcscd pcsc-tools

4.5.4 Remove configuration files

The user preferences are stored in the folder <user home>\.nxp\secure_provisioning_v<version>
\ and are not removed by uninstalling the product. These folders can be removed manually. For more details
about preferences, see chapter “6.1.2 Preferences”.

4.5.5 Remove restricted data

The restricted data are installed in the folder <user home>\.nxp\secure_provisioning_restricted_
data\ and are not removed by uninstalling the product. These folders can be removed manually.

5 User interface

SEC offers a simple and user-friendly interface. It consists of the Menu bar, Toolbar, and the main views
accessible through tabs:

• Build image allows building a bootable image.
• Write image allows writing a bootable image into the processor and securing it.
• PKI management allows generating authentication keys or configuring the Signature Provider.
• Smart Card management (if supported) allows configuring trust provisioning using a Smart Card.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
16 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

The bottom part of the interface is occupied by the Log window and status line. Items that are not supported
for the selected processor are not displayed in the tool. If an item is supported for the processor but is not
meaningful in the current setting, it is disabled (gray). Items that contain any configuration problems are
highlighted in red (errors) or yellow/orange (warnings). The problem is described in the tooltip.

Figure 21.  SEC user interface

5.1 Menu and settings
This chapter gives detailed information about menu options and settings of the tool.

5.1.1 Title of the Main Window

The title of the main window contains:

• Asterisk (*), if the configuration is not saved on the disk (it is “dirty”)
• Name of the tool
• Path to the current workspace

5.1.2 Menu bar

The Menu bar contains several drop-down menus offering various application, configuration, and file-related
functions.

File General workspace and configuration-related operations

New Workspace … Creates a workspace. You are prompted
to specify its location and choose from

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
17 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

the supported processors. In the case the
location already contains a workspace, the
workspace is opened and not created. For
more information, see Workspaces.

Import Manufacturing
Package ...

Imports a manufacturing package (*.zip) with
all data necessary for manufacturing and
creates a "manufacturing workspace" (see
Workspaces. for details about manufacturing
workspace).

Select Workspace ... Switches to another workspace. You are
prompted to specify which workspace
to open. For more information, see
Workspaces.

Explore Workspace... Opens the file explorer in the current
workspace.

Recent Workspaces Displays a list of recently used workspaces.
For more information, see Workspaces. The
number of displayed workspaces can be
customized in Preferences.

Save Settings Saves the current workspace settings.
Preferences Opens the Preferences dialog. For more

information, see Preferences.
Exit Exits SEC.

Target This menu duplicates the operations available from the toolbar, see
Section 5.1.5 for detailed description.

Tools List of additional tools

Manufacturing Tool Opens the Manufacturing Tool. For more
information, see Manufacturing Tool.

Flash Programmer Opens the tool for flash programming and
modifications.
For more information, see Section 5.8.

SB editor Allows creating a custom Secure Binary
file for secure updates. For details, see
Section 5.1.8

Help User help and additional general information

User Guide Opens the User Guide.
Community Opens an NXP webpage with the blog,

where you can find discussions about issues
related to this tool.

SPSDK Online
Documentation

Displays a web page with documentation
for the NXP Secure Provisioning SDK
command-line tools.

About Displays information about the current
version.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
18 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

5.1.3 Preferences

User preferences are stored in the folder <user home>\.nxp\secure_provisioning_v<version>\
and are shared for all workspaces. The preferences are backward-compatible, so for example SEC Tool v4 can
load preferences from SEC Tool v3 if preferences for v4 do not exist yet. If no preferences are available, the
SEC Tool starts with default values.

User preferences contain information about recently used files and workspaces, window sizes, locations,
positions of the splitters, and options configurable in the Preferences dialog:

Timeout for communication re-
established after reset (flashloader
to be initialized) [sec]:

Represents a delay (in seconds) after which the ROM bootloader or
flashloader will be ready after reset of the processor. The read value
may be affected by the configuration of your host. The selected value
may affect the generated write script.

Maximal number of recent
workspaces displayed in the File
menu

Customize the maximal number of recent workspaces displayed in
File>Recent Workspaces. Supported range 1 - 25. Default value: 9.

Read current values after the OTP
configuration is opened

Choose how the reading of device values on opening the OTP
Configuration is handled.
The following options are available:

Never Do not read the values automatically
Ask Confirm the reading manually
Always Automatically read device values

Preferred language for the SEC
tool Select the language in which the tool will be displayed. Supported

languages are English and Chinese.

The following options are available:

Default If the system language is different from the
supported languages, English is used.

EN Set the tool to English
ZH Set the tool to Chinese

Save tool settings Specifies when the tool settings must be saved to the disk.
It is possible to select one of the following options:

Automatically It is the default value. The settings are saved
if needed

On request only The tool always asks whether to save the
settings or not

Sound on error during
configuration

If a new error is displayed in the configuration dialog, the tool notifies
the user with a sound signal. The sound signal is OS-specific. By
default, the sound signal is enabled.

Restricted data ... Restricted data are distributed under a different license. The data can
be downloaded from the NXP website and installed into the SEC tool.
Among other, the data contains OTP Configuration details and trust
provisioning firmware. The data are installed from a ZIP archive. SEC
first verifies whether the selected data are compatible with the current
tool and if yes, the data are copied into the SEC installation folder. To
start using the data, restart SEC.

Use restricted data from directory Allows to control, whether the restricted data are used. The checkbox is
enabled only if restricted data are installed for the selected processor.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
19 / 129

https://nxp.com/mcuxpresso/secure

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

5.1.4 Workspaces

All files generated by the tool are stored in a dedicated folder structure called a workspace.

A workspace is a practical concept for operating with multiple boards, devices, or executables signed with
different sets of keys. It is recommended to create a workspace for every project.

A workspace is always created for a specific device family (series of processors). Once created, it can only be
used to modify the configuration of devices belonging to that family.

To create a workspace, select File>New Workspace ... or File>Import Manufacturing Package ... from the
Menu bar.

Figure 22. Create a workspace

To switch to a different workspace, select File>Select Workspace ... from the Menu bar and choose from
the Open Workspace dialog. Another way to open the existing workspace is to double-click the appropriate
settings.sptjson file in file explorer. It opens the Secure provisioning tool with the given workspace.

To switch to a recently used workspace, select File>Recent Workspaces from the Menu bar and choose from
the list.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
20 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Figure 23. Selecting a recent workspace

Every created workspace contains multiple subfolders. Some of them are specific to device families. For the
new workspace, most of the subfolders are empty; the files are generated or added by the user later.

backups Backup of old keys/crts after importing or generating new ones
bd_files Generated command files used by nxpimage during bootable image

generation step (nxpimage input).
bootable_images Intermediate and final bootable images (nxpimage output). The

nopadding binary starts at the address IVT, while the regular binary
includes everything from the beginning of the boot device.

configs Configuration files - OTFAD/IEE config file (YAML), BEE user keys
config file (YAML)

crts, keys Generated certificates and their corresponding keys.
dcd_files DCD files included in the build image step.
debug_auth Debug authentication files generated by the tool, configuration file for

certificate generation (YAML), certificate request (ZIP), certificate (DC
and ZIP), and authentication script.

gen_bee_encrypt BEE user key files created during the build image step for XIP
encrypted boot types. The keys are used to burn SW_GP2/GP4 fuses
during the image write step.

gen_hab_certs Output super root key table and hash (nxpcrypto output). The table is
programmed along with the bootable image. The hash is programmed
in platform fuses.

gen_hab_encrypt DEK key files generated by nxpimage tool. The DEK key file is used
during write image to generate the key blob for the encrypted HAB boot
type.

gen_sb CMPA and CFPA pages (BIN) used to configure secure boot pages and
SB KEK keys (BIN and TXT) for the key store.

gen_scripts Temporary scripts for tool operation.
root folder Contains the following:

• Last configuration of the tool in file settings.sptjson.
• Build and write scripts.
• Build and write JSON files containing all parameters used to generate

the build and write scripts.
• Log for all executed commands, recorded in file log.txt.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
21 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

source_images Primarily intended as a folder to store input images provided by users.
Also used by the tool to store input images, if input format conversion is
needed.

trust_provisioning Trust provisioning files (supported only if the processor supports trust
provisioning)

trustzone_files TrustZone-M configuration files (JSON or BIN) used by nxpimage
during bootable image generation step (nxpimage input).

5.1.4.1 Manufacturing workspace

For manufacturing operation, the tool supports a simplified user interface optimized for factory manufacturing.
Manufacturing workspace can be created for a given manufacturing package using command main menu >
File > Import Manufacturing Package …

Figure 24. Import Manufacturing Package dialog

In the dialog, select the manufacturing package to be imported and the workspace folder (new or empty
directory). During the import, the workspace directory is created, and the package is imported into the directory.
The tool allows importing manufacturing package created in the same version of the tool.

Once the workspace is created (or reopened), the Manufacturing Tool is displayed, and the rest of the tool
functionality is not available. If Manufacturing Tool is closed, the whole tool operation is finished. If you restart
the tool, it offers to continue manufacturing, or to select another workspace:

Figure 25. Confirmation to reopen manufacturing

If the manufacturing package contains write script, check if the SPT_INSTALL_BIN environment variable in
the script points to the installation directory on the computer. If not, it is recommended to set the environment
variable globally or update the write script manually.

5.1.4.2 Sharing and copying workspaces

It is recommended to store all used files in the workspace. The settings.sptjson file contains all paths
relative to the workspace root folder, so if you open settings on another computer, you can still regenerate all
scripts.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
22 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

In case the script must be executed on another computer without regeneration, it uses environment variables to
specify the SEC installation directory and workspace. These environment variables can be specified externally,
or if not specified, the default value is used. Workspace is detected automatically and environment variable
must be specified only if the script is copied outside the workspace.

Remember that these variables are used in the build and write scripts, but can't be used in configuration files
(BD, JSON, and so on). The configuration files must be updated manually.

5.1.5 Toolbar

The Toolbar offers a quick selection of basic settings.

Figure 26. Toolbar

Processor Shows the chosen processor. Click the button to switch the processor.
You can switch to a processor from the same device family only. To
select a processor from a different family, create a workspace.

Connection (via) Choose the connection to the target. This release supports UART,
USB-HID, SPI, and I2C connectivity. Click the button to customize
connection details. For more information, see Connection.

Boot mode Choose the type of boot. The list depends on the device capabilities
of the currently selected processor. For more information, see the
attached SEC-Tool-Features.xls.

Boot device (from) Click the button to open boot memory configuration. For more
information, see Section 5.1.7.

Life cycle Allows selection of the processor life cycle. Click the button to select
from processor-specific life cycles; the selection dialog displays a short
description for each option.

Trust provisioning type Allows selection of trust provisioning type and enabling it for the trust
provisioning operation. This button is visible only if trust provisioning
is supported for the processor. The supported types depend on
processors (for more information, Section 5.1.8):

• Smart Card - the secrets are stored on the Smart Card
• Device HSM - the secrets are encrypted using keys stored in the

processor

Debug probe Allows selecting the debug probe connected to the computer; see
Section 5.1.9 for details.

5.1.6 Connection

The Connection dialog allows you to select the connection with the target processor and test it.

The dialog is accessible from Target > Connection from the Menu bar or the Toolbar.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
23 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Figure 27. Connection dialog with errors and proposed next steps

It contains the following options (supported connection types are processor-specific, see details in the
attachment to this document):

USB Specify USB connectivity to the specified Vendor ID/Product ID pair.
UART Specify UART connectivity through the specified port and baud rate.

The baud rate is automatically detected by the bootloader when
processing the initial ping. This means that the target processor must
be reset after a new baud rate has been selected.

SPI/I2C It is possible to connect with the processor using via SPI or I2C
connection using the LIBUSB interface available on:

• MCU-Link Pro (http://www.nxp.com/pages/:MCU-LINK-PRO)
• LPC-Link2 (https://www.nxp.com/design/microcontrollers-developer-

resources/lpc-link2:OM13054). LPC-Link2 is present on several EVK
boards, however, to connect via SPI you must use jumper wires to
connect with the processor.

Before starting the MCUX Provisioning Tool, it is necessary to
download and install USB drivers from the product pages listed above.
It is possible to configure the following connection parameters:

SPI/I2C device The device is specified using a USB Path.
The default value in the connection dialog
is “Auto”, which means if there is just one
device connected to the computer, it is
selected automatically. The details about the
USB Path format can be found in the SPSDK
documentation.

Speed [kHz] Communication clock frequency in kHz.
CPOL, CPHA Signal polarity and phase; see SPI

specification for details.
Address Address of the I2C device.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
24 / 129

http://www.nxp.com/pages/:MCU-LINK-PRO
https://www.nxp.com/design/microcontrollers-developer-resources/lpc-link2:OM13054
https://www.nxp.com/design/microcontrollers-developer-resources/lpc-link2:OM13054

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Use the Test connection function to verify that the device can be properly accessed with the given
configuration. To ensure successful detection of the processor with Test connection, make sure of the
following:

• The board is correctly powered up
• The board is properly configured to ISP (In-System Programming) mode
• The board is connected to the computer

The connection dialog detects the following parameters:

Connection Status of the selection of a communication device (USB or serial port)
or a USB path for the SPI/I2C connection

Mode Communication mode bootloader or flashloader application.
Processor Match if the connected processor matches the selected one, No match

otherwise.
Life cycle Life cycle that was detected in the connected processor.

The following connection results are possible:

Not tested yet Use the Test connection button to run tests.
OK Connection successfully established.
FAILED Connection tests failed. For details, see Connection status. If the

connection detection fails, the SEC tool tries to detect additional
processors connected to the computer. It may help to find a wrong
SEC configuration, such as a wrongly selected processor or wrongly
selected VID/PID. In case you need more information about the failure,
you can use SEC in verbose mode and see the console view with
details of the operation.

At the bottom of the connection dialog, there is the "Sample blhost/sdphost command" that allows running the
corresponding SPSDK command-line tools with specified arguments. The button on the right side copies the
command with arguments into the clipboard.

5.1.7 Boot memory configuration

The Boot Memory Configuration dialog allows selecting and configuring a boot device. The dialog contains the
following configuration parts:

Boot memory type This part allows selection of the boot memory type, and optionally
instance. The selection contains all memory types but unsupported
types are disabled.

Predefine template This part allows selection of the boot memory configuration template.
The list is specific for each memory type and contains memories
available on NXP evaluation boards. After opening the dialog, the
option contains value that matches the current configuration (if any), or
is empty, the first item in the drop-down menu is a memory used on the
evaluation board (if applicable);

User configuration This part allows loading or saving the configuration to the selected file.
It might be useful for reuse of the configuration for another project or
sharing the configuration with colleagues.

Protected area This part allows specifying the memory area that must not be changed
by the SEC tool. If the tool tries to erase or modify the selected memory
area, a confirmation dialog is displayed. It might be useful for protection

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
25 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

of the custom data in a boot memory. Specify comments/reasons,
because it will be displayed as part of the confirmation message

Boot memory configuration
parameters

Configuration of the memory, these parameters are specific for each
memory type.

Comment The description of the boot memory, that contains information if the
predefined template was applied

Test the configuration This button is used to test the current memory configuration with the
connected processor/board

Convert to FCB This option is available for FlexSPI NOR only. The button allows
converting simplified FlexSPI NOR configuration into full “Flash Control
Block”

5.1.7.1 FlexSPI NOR

FlexSPI NOR flash can be configured in two ways:

• by using the flashloader/ROM based simple configuration in the Boot Memory Configuration dialog
• by using the complete FCB (FCB binary)

For a simple configuration, the user can modify the values suggested in the dialog box. To create your own
FCB from SEC Tool, do a simple setup and use the Convert to FCB button in the bottom-right corner. It opens
the Convert to FCB dialog box. The Convert button in the Convert to FCB dialog is used to test a simple
configuration from the boot device configuration and to start the conversion process. When the conversion
process is complete, it creates a .bin file in the desired location, given by the path to the FCB file.

The Convert To FCB dialog offers a checkbox to use the created FCB binary file as a FlexSPI NOR/user FCB
file (required for Dual boot). If unchecked, only the conversion is done.

Figure 28. Conversion dialog

FCB can be also created in MCUXpresso IDE by adding the FCB component into Peripheral Drivers in
Peripherals tools, where the full configuration can be specified.

When the complete FCB is specified in the boot device configuration, the user can specify two separate FCB
files. The FCB for runtime is used for flash configuration during the processor boot. The FCB for write is used
for flash configuration for programming the application.

5.1.7.2 OnChip RAM

The SEC tool allows creating images executed in internal RAM, which might be useful for chip
(re-)configuration. For this boot memory, the write script writes the application into the processor and
intermediately launches it. If the chip is secured, the application is written and launched via the SB file.

Note: The SB file could also be used for recovery flash.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
26 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

5.1.8 Trust provisioning

The Trust Provisioning dialog allows selecting a processor-specific trust provisioning type and enabling it for
the trust provisioning operation.

Figure 29. Trust provisioning disabled

Figure 30. Smart Card provisioning type

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
27 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Use the Detect function to scan for all connected Smart Cards. Detected Smart Cards are then listed in the
Smart Card selection. For details, see the Connection log.

Use the Test connection function to verify that the selected Smart Card is connected and can be used for trust
provisioning.

Note: Windows 10 has a new security feature called "Windows Hello for Business". Due to this feature, the
'Windows Hello for Business 1' Smart Card reader is detected.

5.1.9 Debug Probe Selection dialog

Figure 31. Debug Probe Selection dialog

The debug probe selection dialog allows to:

• Select a probe for shadow registers (only for processors where the shadow registers for fuses are initialized
via a debug probe)

• Use a test connection with the given probe
• Erase the processor flash (if supported in the processor via the debug probe API)

When the dialog is opened, the probes connected to the computer are detected. It is possible to rescan the
probes anytime later again using the Refresh probes button.

Once the probe is selected, the selection is stored in the workspace settings including the hardware ID (serial
number). If a different board is connected, update the selection. During opening the dialog, if the selected probe
is not found, the tool updates the hardware ID automatically.

The Test connection button provides information on whether the debug can be started for the selected debug
probe. The possible results are:

• ready to debug – if the debug probe and the processor are ready for debugging
• no debug – if the connection with the debug probe was established, but the processor cannot be debugged;

in this case ensure that the debugger is properly connected and the processor is running (not ISP mode)
• FAILED – if the connection with the debug probe failed

Erase button allows erasing the internal flash (mass erase). See reference manuals for details.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
28 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

5.2 Build image
In the Build image view, you can transform an application image into a bootable format compatible with the
selected processor. The build image tab may have a dirty flag on the icon, which means there are changes that
were not included in the last build operation.

Figure 32. Build image (LPC55Sxx)

Source executable image Chooses the input executable file. For more information about the input
image format, see Section 5.2.1.

Start address The base address of the image. Applicable only to a binary image. For
ELF and S-Record and HEX files, it is detected automatically.

Application/Bootable image The label provides the following information about the selected source
image:

1. whether it is an application or a bootable image.
2. whether the selected source image is built as "eXecuted In Place",

and will be executed from the boot memory, where it is stored. If
not, the image must be copied to RAM before the execution. The
information is derived from the starting address of the image and
compared with the memory address of the selected processor, so
the result might not be correct if the selected image does not match
the selected processor.

Additional images Opens the configuration dialog for the Additional User/OEM Image, see
Section 5.2.5

Use custom output file path Name of the generated bootable image file and its location. If not
specified, the tool names the image based on the input. The file

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
29 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

extension is specific for a processor and a boot type, it is either BIN for
bootable images or SB for secure-binary capsules.

Image version Version of the bootable image. It is used for dual image boot. The
image with the higher image version is booted first.

Dual image boot Opens the configuration window for dual image ping-pong boot. Image
can be written to the base (image0) and/or to the remapped (image1)
space of the flash, each of the them has its own image version. ROM
then uses the image version to select the latest image to boot. If the
latest image boot fails, the old image is used to boot again. Available
for RTxxx, RT116x/7x, RT118x, LPC55S36, LPC553x, KW45xx, K32
W1xx.

Firmware version Opens the configuration dialog of Firmware versions (Secure and Non-
secure). Both the Secure and Non-secure firmware versions specify the
image version of the image to be written. These versions are checked
during the SB file or AHAB image uploading against values in CFPA
(the uploaded version must be equal to or greater than the appropriate
value in the CFPA) processor or against fuse values processors. The
Secure firmware version specifies the secure image version checked
during booting by ROM.

XMCD Allows enabling the External Memory Configuration Data feature.
XMCD is needed for comprehensive or feature-rich applications
requiring large capacity of RAM (on-chip RAM is not enough). Either
a YAML or BIN configuration file can be provided or XMCD simplified
configuration can be prepared in XMCD Editor (for details, see the
description of the --xmcd-cfg CLI parameter).

DCD (Binary) Selection of what Device Configuration Data must be included in the
bootable image. The option From source image can be used only if
the source image contains DCD. The DCD enables early configuration
of the platform including SDRAM. MCUXpresso Config Tools can
generate a DCD in a compatible format. If the target processor does
not support DCD files, the checkbox is disabled. For more information,
see Section 6.2.4.

TrustZone Allows you to enable TrustZone features. The following selection is
possible:

• TrustZone disabled image - Disables TrustZone. This option might
not be supported for some processors.

• TrustZone enabled image - Enables TrustZone with preset data.
• TrustZone enabled image with preset data - Enables TrustZone

with custom TrustZone-M data. JSON and BIN file formats are
supported. JSON data can be generated in and exported from the
TEE tool of MCUXpresso Config Tools. BIN file is created by the
nxpimage utility. For more information, see Section 5.2.3.

Authentication key Signs the image with the specified key. The key can also be used
for the authentication of the SB file. This option is only applicable to
authenticated and encrypted boot modes and offers a selection of keys
generated in the PKI management view.

Key id The keyblob encryption key identifier is used in the encrypted (AHAB)
boot type

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
30 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

AHAB/HAB encryption algorithm Selection of AHAB/HAB encryption algorithm used in the encrypted
(HAB) or encrypted (AHAB) boot types.

Key source A key source for signing the image.
User key For OTP key source master key used to derive other keys. For PUF

KeyStore user key is used to sign the image. Only available for Signed
boot types.

SBKEK, SB3KDK, or CUST_MK_SK A key is used as a key-encryption key to handle SB file. Only available
for secured boot types. For RTxxx, it is only enabled when the key
source is KeyStore. For LPC55Sxx devices, the key store is initialized
only once in the device life cycle and after that, any change in SBKEK
will cause failure to load the SB file into the processor. For more
information, see KeyStore. OEM seeks a hex key used to randomize
the creation of the SB file with the CUST_MK_SK key.

Configuration dialogs The following dialogues are available on the Build image view:

XIP encryption (BEE
user keys)

Opens the configuration dialog of XIP
encryption user keys. Option enabled only for
XIP encrypted (BEE user keys) authenticated
and XIP encrypted (BEE user keys) unsigned
boot types.

XIP encryption (BEE
OTPMK)

Opens the configuration window of BEE
with OTP Master Key. The option is enabled
only for XIP encrypted (BEE OTPMK)
authenticated boot type.

IEE encryption Opens the configuration dialog of IEE
encryption. The option is enabled only for
IEE encrypted boot types.

OTFAD encryption Opens the configuration dialog of OTFAD
encryption. Option enabled only for OTFAD
encrypted boot types. For RT10xx devices,
the button name is XIP encryption (OTFAD
user keys).

XIP encryption
(OTFAD OTPMK)

Opens a configuration window of OTFAD
with OTP Master Key. The option is enabled
only for XIP encrypted (OTFAD OTPMK)
authenticated boot type.

PRINCE/IPED regions Opens a configuration window for encrypted
PRINCE/IPED regions allowing to specify,
which flash regions will be encrypted.

OTP/PFR/IFR
configuration Opens the OTP/PFR/IFR configuration dialog

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
31 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Figure 33. Build image panel

There is a build panel with the Build image button and a list of generated files on the right side of the build
page. The Build image button updates all files and executes the build script. The icon on the button displays an
asterisk (*) called “dirty flag” if the build script is not updated or is not successfully executed.

The generated files below are displayed as clickable links, and the file content is displayed if you click them.
The file name starts with an asterisk (*) if the file on the disk is not updated. It might be caused by changes in
the configuration. Move the mouse cursor over the * to see the details about changes/differences.

Note: The differences are not supported for binary files or large changes.

This information is updated in the background with some delay, so it might take a couple of seconds before the
real status is displayed. Until the information about the file is updated, the file icon is ? (question mark).

The Update files button allows updating all files without the execution of the script.

5.2.1 Source image formats

SEC supports several formats for source image: ELF, HEX, BIN, or SREC/S19. The image format is then unified
into the format required by the build script, and this conversion is done inside SEC (the prior build script is
called). It is recommended to avoid conversion and use the format needed for the build.

By default, the source image may not contain any boot header. For RT10xx, RT116x, RT117x bootable image
can be used too; such image is parsed and if contains DCD, FCB or XMCD sections, these parts can be reused
to build a new bootable image. Once a bootable image is selected and the parser accepts the image, the tool
offers to reuse specific parts and if confirmed, the configuration is updated.

Figure 34. Configuration Helper

5.2.2 XMCD Editor

The editor allows customizing parameters for simplified XMCD. These parameters are specific for the selected
XMCD memory interface, it can be either:

• FlexSPI interface for the HyperRAM/APMemory or
• SEMC interface for SDRAM

The XMCD editor dialog can be reached by the XMCD Edit button on the Build image view when FlexSPI RAM
or SEMC SDRAM is selected.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
32 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

The Import button allows importing simplified configuration from YAML or binary file. The Reset to defaults
button allows returning to default settings.

5.2.3 TrustZone configuration file

TrustZone and related features of the MCU can be pre-configured by data from application image header at
boot time instead of setting the registers from the application code. TEE (Trusted Execution Environment) tool
from MCUXpresso Config Tools allows you to export the TZ-M preset data for use in SEC. Follow these steps to
modify the existing example application, export the TZ-M file and add it into the application image.

Note: TrustZone feature is available only for LPC55Sxx, RTxxx, KW45xx, and K32W1xx devices.

To create, export, and import a TrustZone file, do the following:

1. Open an SDK example:
a. From MCUXpresso IDE:

i. In the Quickstart panel, select Import SDK example(s)....
ii. Select the example to import.
iii. In Project Explorer, open the context menu of the imported secure project.

b. From MCUXpresso Config Tools:
i. On start, select Create a new configuration and project based on an SDK example or hello

world project.
ii. Clone one of the TrustZone enabled (secure) projects.

2. Open the TEE tool:
a. In MCUXpresso IDE:

i. In the Menu bar, select MCUXpresso Config Tools > Open TEE.
b. In MCUXpresso Config Tools

i. Select TEE tool from the Config Tools Overview.
3. In Security Access Configuration>Miscellaneous, use the Output type drop-down list to select ROM

preset.
4. Configure security policies of memory regions as you see fit (for details, see MCUXpresso Config Tools

User Guide https://www.nxp.com/webapp/Download?colCode=GSMCUXCTUG).
5. In Menu bar, select File>Export>TEE Tool>Export Source Files.
6. In the Export window, specify the JSON file download folder and select Finish.
7. Remove the BOARD_InitTrustZone() call from the SystemInitHook(void) function and tzm_config.h include

located in the main application file (for example, hello_world_s.c)

Alternatively, basic TZ-M-preset JSON data included within the SEC layout can also be used as a starting point
template for further modifications of TrustZone pre-configuration. Device-specific template files are provided in
the data\targets\LPC55S##\ and data\targets\MIMXRT###\ subfolders.

Note: The TrustZone template contains all registers/options with default preset values. Because SAU and AHB
are disabled in the template, it is expected that the template will be customized before use.

After the JSON file has been downloaded, you can import it in SEC:

1. In the Menu bar of SEC, select File>Select Workspace ... and choose a workspace. Alternatively, create a
one by selecting File>New Workspace

2. In the Build image view, switch the Boot type to Signed or Unsigned with CRC.
3. Use the TrustZone pre-configuration drop-down list to select Enabled (custom data).
4. Click Browse to navigate to the location of the stored JSON file and select Open to import it.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
33 / 129

https://www.nxp.com/webapp/Download?colCode=GSMCUXCTUG

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

5.2.4 OTP/PFR/IFR configuration

The configuration dialog allows configuring:

• one time programmable fuses
• CFPA and CMPA pages from Protected Flash Region (PFR)
• ROMCFG page from Information Flash Region (IFR)

Use the configuration dialog to:

• Review the configuration prepared by SEC
• Read the current configuration from a connected processor
• Customize the configuration
• Lock the configuration (this feature is available for some fuses only)

In the OTP (One Time Programmable) Configuration, the configurable item is called a fuse. In the PFR
(Protected Flash Region) and Information Flash Region (IFR) Configurations, the configurable item is called a
field. The content of the dialog depends on the selected processor.

Figure 35. OTP Configuration

Primarily all changes in the configuration dialog will be applied as part of write script - with the exception of
Advanced mode.

The configuration window contains three main areas:

• Table of all fuses/fields on the left-hand side
• Detailed information about the selected fuse/field on the right-hand side
• Buttons bar in the bottom of the view

The width of the two main areas can be adjusted using the splitter.

5.2.4.1 Table of all items

PFR Configuration supports two pages: CFPA (Customer In-field Programmable Area) and CMPA (Customer
Manufacturing/Factory Programmable Area). The IFR Configuration supports one-page ROMCFG (ROM
Bootloader configurations). Each page represents a separate list of fields organized in a tree. In OTP
Configuration, all fuses are displayed in a single tree. The items in the tree are organized into logical groups.
The tree of all items is displayed in form of a table, with the following columns (a column might not be displayed
if the feature is not available for the processor):
MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
34 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Name Human-readable name of the item. Some names may not be public
and are available as a restricted data package. See the section about
restricted data in Preferences.

Offset or shadow Offset of the item address or offset of the shadow register address
Index of the item (parameter for blhost to access the fuse)
R/W/O Status of read/write/operational locks retrieved from the processor. For

more information, see Section 5.2.4.8.
Current value The current value of the item read from the processor (hexadecimal)
Required value The value required by SEC or by the user. Values preset by SEC are

highlighted in blue and can be modified only in Advanced mode.
Default value The default value of the item (hexadecimal) - after reset value.

Note: If the information is not applicable for the configuration, some columns might not be displayed.

Note: On some devices (KW45xx and K32W1xx), there are fuses with width bigger than 32-bit, for example,
256-bit keys, and 512-bit version counters. These long fuses are displayed on several rows in the table and
have a common # index (fuse index).

5.2.4.2 Tree-filtering toolbar

It is possible to filter items displayed in the tree. There are predefined filter types in the dropdown list with a
description in the tooltip. It is also possible to search for an element by name using the text box.

The toolbar also contains two buttons allowing to expand or collapse all groups.

5.2.4.3 Item editor

In the right part of the dialog, the following details are displayed for the selected item:

• Table with current and required item value as a hexadecimal number
• Current state of the read and write lock
• Selection, where the fuse will be written (see Section 5.2.4.7)
• Table with current and required item value as a binary number
• Table with current and required item value as bit-fields value (only if the item is split to bit-fields)
• Description of the selected object (group of items, fuse, field, bit-field)

5.2.4.4 Buttons

The following buttons can be used for operations with the selected item:

Lock after write checkbox Lock the item after write. (see Section 5.2.4.4)
Default Remove user requirements for the item and apply a default value.
Use current Copy the current item value as a new requirement
Fix problems Fix the displayed problems automatically

The following buttons are available in the button bar:

Advanced mode See Advanced mode.
Burn/Write Write all the required values into the connected device. Only enabled in

Advanced mode.

Note: Use with caution. Changes are irreversible.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
35 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Generate script Generate script to write the required values. Expected to be used by
advanced users only. By default, all items are written by the write script.
Only enabled in Advanced mode.

Read Read lock status and current values for all items from the connected
target device.

Default all Remove all user requirements and apply a default value for all items.
Import ... Import a previously exported configuration in JSON file format.
Export ... Export the current configuration as a JSON file.
OK Accept changes and return to Write image.
Cancel Close the dialog without accepting changes.

5.2.4.5 Read from connected device

Before you start the OTP/PFR/IFR Configuration tool, it is recommended to check in the Connection
dialog if the board is connected to the host. If the target device requires a flashloader (RT10xx, RT116x/7x,
and RT118x), it is recommended to click Start flashloader in the Write image view to ensure that the
communication with the device can be established.

After the Configuration tool is open, it will offer to load current fuse values from the processor. This feature is
optional and can be done also anytime later using the Read button. The Preferences dialog contains an option
to configure the initial read operation.

The read operation consists of the following steps:

1. Read locks to find which fuses are readable
2. Read current fuse values
3. Detect individual write locks (if applicable for the processor, see chapter 6.3.1.7 Locks for details)

5.2.4.6 Required value

Items that must be written based on selected configuration (for example contains preset value), are highlighted
in blue. The remaining items, by default, either do not have any required value – displayed as * (asterisk) OR if
default value is applied, they are displayed as *<value> (for example *0). The required value for these items can
be specified:

• As a 32-bit hexadecimal number
• By bits. Click the value in the second row of the Bits table to toggle the bit, double-click to remove the

requirement from the bit.
• Per bit-field (only if the register contains bit-fields)

For some bit-fields, the value is selectable from a drop-down list, otherwise, it is specified as a decimal or
hexadecimal number (with 0x prefix).

5.2.4.7 Burn fuse

In the OTP configuration, it is possible to select the source, where the fuse is burnt:

• Write script
• SB file
• Device HSM firmware

The available options depend on the configuration, so for example if shadow registers are used, no other option
is enabled.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
36 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

5.2.4.8 Locks

Locks are available in OTP Configuration to lock fuses. A lock block specifies access restriction to the fuse -
usually, read or write restriction. The locks must be programmed at the end of the development cycle when
the rest of the configuration is already stable and tested and will not be changed. Locks are also used in IFR
ROMCFG configuration. Here the lock block specifies write-access restriction to the ROMCFG block as each
16-bytes block can be written only once.

Two types of LOCKS are supported in SEC:

Global Configured in a separate fuse usually called LOCK. The configuration
is applied to several other fuses or shadow registers. READ, WRITE, or
OPERATION locks exist, each type blocks the corresponding access to
the fuse.

Individual write locks For some processors, it is possible to apply write-lock for a single fuse.
Additionally, some fuses can be written only once and write-lock must
be applied. Both these features are presented as Lock after write
checkbox, see description below. The Lock after write checkbox is
also used to indicate write restriction to the ROMCFG block.

The status of all locks is updated during the Read operation. The status is displayed in the fuses table,
specifically, in these columns:

R Display status of read lock for the fuse
W Display status of write lock for the fuse (combined status of global and

individual write lock)
O Display status of operation lock for the fuse

The following icons are to represent the lock status:

Icon Description

No icon Fuse does not support a corresponding lock

Lock status unknown

Fuse access unlocked

Fuse access locked

Table 2. Lock icons

Lock after write checkbox is dynamically enabled or disabled based on the selected fuse.

• Individual write-lock is not supported for selected fuse - checkbox is disabled and unselected
• The fuse must be locked after the first write - checkbox is disabled and selected

• Individual write-lock is optional - checkbox is enabled

For fuses configured to turn on individual write-lock, the following icon is displayed in the Required value
column in the fuses table:

On RT116x, RT117x, and RT118x devices, the lock after write status cannot be detected, so the fuse might be
displayed as unlocked even if it was already locked.

Lock validation

OTP Configuration reports a warning, in the case the write-lock for the fuse is on and the fuse value is not fully
specified.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
37 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

5.2.4.9 Calculated fields

Some registers or bit-fields contain a value that is calculated using the value of another bit field. For example:

• One item may contain the inversed value of another item
• One bit field contains CRC of other bit-fields of the item

This feature is supported in Configuration as validation, the error is displayed in the case the calculated value
does not match or the source value for the calculated item is not specified. See the following chapter for details
about validations and problem resolutions.

5.2.4.10 Validation and problem resolution

The configuration provides validation of the required values and highlights the following problems:

Errors (highlighted in red)

• The required value cannot be written. It is in conflict with the current value.
• The required value cannot be written, because there is a write-lock applied for the fuse and the required value

does not match with the current value.
• The required value for the calculated item does not match the value calculated by SEC.
• PFRC: PFR Configuration internally uses PFR Checker from SPSDK to detect some kind of problems in the

user configuration. If any problem is detected, it is reported on the status line.
• Other processor-specific validations.

Warnings (yellow background or highlighted in orange)

• Write-lock fuse will be burned, but the required value(s) for locked fuse(s) are not fully specified.

• The calculated value does not match with the current value in the processor (it is reported only if there is no
required value for the calculated value; otherwise an error is reported for the required value).

• The reserved bit field value is selected for the bit field.

The problems are indicated by the icon in the window title, in the tree, and, if the item is selected, in the details
section, in all editors.

In the BITS editor, the problem is displayed only for bits affected by the problem. It allows fixing the problem
easily by clicking the affecting bit value (for example, inverting the required value of the bit).

For all errors, you can use the Quick Fix button. This button fixes all errors within the selected item. Make sure
to review the changes made by the quick fix to ensure that the newly applied value matches your expectations.

Note: Specific OTP/PFR fields are used for the transition of the device through its life cycle, granting
conditional or locking down access to various debug resources in the device once programmed. As the best
practice, it is recommended to program these registers once the secure boot has been verified as functional.
Incorrect values in these fields may render the platform nonfunctional or no longer accessible for recovery. On
some platforms, these registers include special "valid" semantics - for example, on the LPC55Sxx processors,
the DCFG_CC_SOCU_PIN and DCFG_CC_SOCU_NS configuration fields include bits that must be programmed
as the inverse of all the other fields in the register for the configuration to be valid. The Fix Problems facility
enforces this constraint only if the register contains a non-zero value - that is, an explicit user configuration of
the register has been detected.

5.2.4.11 Advanced mode

By default, it is recommended to apply the modified configuration into a workspace settings file and the Write
script, so it is applied together with the bootable image. However, sometimes it might be necessary to burn
a single fuse value, in which case you can use the Advanced mode. The Advanced mode is designed for
standalone usage of the Configuration tool and allows you to:

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
38 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

• Write a required value directly to the connected processor (see section Section 5.2.4.12)
• Generate the script to write required values
• Modify all required values, even the ones preset by SEC-PFR Configuration: Clear CMPA page

Additionally, the reserved items values are read from the connected processor in this mode (most likely useful to
NXP engineers only).

The Advanced configuration is not expected to be applied to the write script, so the OK button is disabled. The
Export button can be used to store the created configuration into an external file.

Note: Advanced mode is not needed for normal workflow supported by the SEC tool, it must be used only for
the use cases not supported by the tool.

5.2.4.12 Write/Burn

The Write/Burn operation burns all required values into the connected device including all locks. The burn
operation consists of the following steps:

1. Read current values from the processor
2. Update validation problems
3. Generate write/burn script
4. Execute the write/burn script

Bear in mind that the burn operation is irreversible. It is recommended to:

• Double-check all values being burned
• Double-check all items being locked
• Double-check all problems reported by the configuration
• Generate write/burn script and review the content

There is a difference between Burn and Generate Script:

• The Burn operation is optimized for the selected processor. The fuse will not be burned if the value matches
or the fuse is locked. For CFPA and CMPA the whole page is always written.
Warning: The ROMCFG block can be written only once.

• Generate Script is expected to be used on an empty processor. It contains the configuration of all fuses and it
might fail if any fuse is already burnt.

5.2.4.13 PFR/IFR and OTP differences

• PFR Configuration contains two pages: CFPA and CMPA. IFR Configuration contains one-page ROMCFG.
• Items in OTP Configuration are called “fuses” while items in PFR/IFR Configuration are called “fields”.
• Fuses in OTP Configuration are burned item by item, so you can specify a single requirement only. The fields

in IFR ROMCFG Configuration are written by 16-bytes blocks, so completed 16-bytes requirements must be
specified. PFR always updates the whole page, so if no requirement is specified, the default value is used.

• Selection `burn fuse by` is supported only for fuses.
• Locks selections are supported only for fuses and the IFR ROMCFG block.
• CFPA and CMPA pages can be written multiple times whereas the ROMCFG block can be written only once.

5.2.5 Additional User/OEM AHAB images

This dialog allows to specify up to 8 user images into the AHAB container. The user can add either data images
(data, dcd, …) or executable images (executable normal boot image, executable fast boot image, …) in the
purpose of multicore applications.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
39 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

The configuration is represented as a table, where each row represents one user image. Columns represent
configurable features for each image, description for each feature can be found in the tooltip. The last image is
reserved for the application executable image, which is automatically updated according to the build tab.

Figure 36. Additional User/OEM Images configuration

The dialog provides only simple validation of the input data, such as:

• Input value format
• Image offset overlapping
• Check if each core has only one single executable image
• Alignment of the image offset

5.3 Write image
Use the Write image view to write an image into the boot memory, burn platform fuses and configure the
selected life cycle to achieve a secure boot. The write image tab may have a dirty flag on the icon, which
means there are changes that were not included in the last build operation.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
40 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Figure 37. Write image (LPC55Sxx)

Use built image If checked, the output of the Build image operation will be used for the
write.

Bootable image Path to the image that will be written into the target device. The file
extension is specific for processor and boot type, it is either BIN for
bootable images or SB for SB capsules. For RT processors, the binary
image must be in "nopadding" form without the FCB header.

Additional input files Display input files for the Write image operation. The contents depends
on the processor, boot type, and other build options. By default,
the contents are output files of the Build image operation. You can
manually replace each file with a custom file using the Import button.

Start flashloader Allows you to initialize and start flashloader on the connected
processor. If security is enabled in the chip, the signed flashloader
is created automatically. Useful if you want to use blhost from the
command line.

Test life cycle Opens dialog that can set a temporal advanced life-cycle state. This
allows it to test processor behavior in a selected life-cycle state without
burning the fuses. The board must be connected by a debugger probe.
Supported debugger probes are Jlink, pyOCD and PEmicro.

Write image panel There is the Write image panel with the Write image button and the
file name of the write script, on the right side of the window. The button
and label contain an asterisk (*), if the write script is not updated on the
disk. Both the button and the label update the script on the click, but the
button also starts the script.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
41 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Before clicking the Write image button, ensure that the board is connected and configured to the ISP mode. If
any irreversible operation is done by the write script, a confirmation dialog with details appears.

5.3.1 Manufacturing package

The manufacturing package is a ZIP file that contains the write script and all other files needed for the write
operation and it is designed to send the files into the factory for production. The manufacturing package can be
created using the button Create manufacturing package … on the Write image page.

The Create Manufacturing Package dialog allows the user to:

• Review files included in the package
• Check the write script arguments, the arguments are in the same format as they are used in Manufacturing

Tool
• Select the output manufacturing package file path

Figure 38. Create manufacturing package dialog

Note: Manufacturing package is not supported if shadow registers are used.

In the factory, the manufacturing package can be imported using main menu > File > Import Manufacturing
Package…. For more information, see Section 5.1.4.1.

5.4 PKI management
The PKI management view displays the list of keys and certificates used to validate the authenticity of the
image. Generated keys can be exported for later use. PKI management allows generating the following:

• keys for image authentication
• keys for trust provisioning
• key pair for debug authentication

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
42 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Figure 39. PKI management (LPC55Sxx)

5.4.1 Generate keys

Authenticated images rely on a Public Key Infrastructure (PKI) set of certificates. SEC includes a graphical
interface that simplifies the generation of a PKI-compatible with selected processor.

Figure 40. Generate keys (RT10xx)

Figure 41. Generate RSA keys

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
43 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Figure 42. Generate ECC keys

Create new CA This option allows generating keys including Certificate
Use existing CA Enable the use of user-specified CAs. Certificate and Private Key

must be in PEM format.
Private Key Path to the private key file
Certificate Path to the certificate file
Key type Generated key type.
Key length Generated key length in bits.
Serial number The value is used for key revocation. The serial number for RSA keys

on LPC55Sxx and RTxxx consists of three parts: preamble, revocation,
and number.

Password phrase Secure generated CA with the specified parameter.
Duration [years] Set certificate validity to the specified duration in years. For supported

devices, it is necessary for signing purposes only, as the duration is not
directly verified in hardware.

Number of keys Set to the number of keys to be generated. Most processors support up
to 4 keys, with a recommended default of 4.

Certificate chain The depth of the key chain.

Preamble Prefix of the serial number, mandatory fixed value
Revocation Middle part of the serial number, 16 bit revocation ID - this value should

match the IMG_REVOKE field in OTP/PFR (CFPA) on the device.
Number Suffix of the serial number bytes used to uniquely identify the

certificate / key.

Refer to the OpenSSL documentation for additional details about the Password, Serial, and Duration options.

Once all parameters have been specified, click the Generate button. The key generation script output will be
displayed in the progress window.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
44 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Figure 43. Generate Keys - Progress

5.4.2 Add keys

Once keys have been generated in the Generate keys dialog, you can add additional image keys using the
Add keys dialog.

IMG key path Path of the IMG key to be generated and added.
CSF key path Path of the CSF key to be generated and added.
Key Key type to be generated, either Image for image signing or

Intermediate for creating a chain of keys

The other items are described in Section 5.4.1

Once you have specified your preferences, click Ok to add the keys. The output will be displayed in the
progress window.

Figure 44. Add Keys progress

5.4.3 Re-generate certificate

The SEC tool allows re-generating a ROT certificate, for certificate revocation (available only for RSA ROT
certificates). Select the certificate and click the Re-generate certificate… button. In the dialog, review the
parameters, update the serial number and confirm re-generation. The current certificate will be backed up into
the backup folder and then re-written.

The parameters for re-generation are the same as the parameters for generation; the description can be found
in the previous chapters.

5.4.4 Import/Export keys

You can export generated keys for later use with the help of the Export function. To export keys:

1. Select Export keys in the PKI management view.
2. In the dialog, navigate to the location you want to export the keys to, and select Select folder.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
45 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Note: Export keys also export workspace configuration, including symmetric keys, for example, SBKEK for
LPC or BEE user keys for RT10xx devices.

You can later import the keys into a new workspace using the Import function. The operation makes a backup
of current keys and settings inside the current workspace. The symmetric keys, for example, SBKEK for
LPC55Sxx/RTxxx, BEE user keys for RT10xx, OTFAD keys data for RT116x/RT117x/RT118x/RTxxx devices,
and IEE keys data for RT116x/RT117x/RT118x are restored from the imported folder.

To import keys:

1. Select Import keys in the PKI management view.
2. In the dialog, navigate to the location of the crts and keys folders containing the keys info you want to

import and select Select folder.

To import external keys that were not exported from the SEC tool:

1. Generate new dummy keys and export them into a new folder; ensure that the number of keys matches the
keys being imported.

2. Overwrite the keys in the exported folder with the files being imported (rename keys being imported so they
match the naming convention used in the SEC tool).

3. Import the keys back from the folder.

5.4.5 Keys for trust provisioning

If Smart Card trust provisioning is selected on the toolbar, it is possible to generate a certificate signing key and
a production audit log key. Only one key of each type is supported, so if the key already exists, it is replaced.
The keys then can be used at the Smart Card management tab.

5.4.6 Debug Authentication

Debug Authentication (DA) buttons are displayed in PKI management only for processors that support DA.
(For more information, see the attached SEC-Tool-Features.xls) The Generate debug key button is always
enabled, Create debug certificate request and Open debug port are enabled only if the DA key exists.
Generate debug certificate is enabled in workspace with authentication keys. The Generate Debug Key
button opens a dialog box for creating a debug authentication key pair. Generate Debug Certificate Request
helps you create a request that will be sent to the OEM, from which a debug certificate can be generated. The
Generate Debug Certificate buttons display a certificate where the OEM selects the keys and sets the rights
that will be granted to the certificate holder. The Open Debug Port dialog prepares the connected device for
debugging by using DAC.

Note: For more information, see Section 6.11

5.4.7 Signature provider

Signature provider allows using custom provider for the authentication instead of keys stored on a local
machine. Signature provider requires a custom implementation of an HTTP server with a simple API providing
the authentication.

Once Use sign. provider checkbox is selected it is possible to open the configuration dialog. When enabled,
the present keys will be moved to the back-up folder and the signature provider server will be used as the
source of public keys and will provide signing. Configuration set in Signature Provider Configuration dialog
will be used in configuration files used for build (cert_block, mbi_config, sb_config).

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
46 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Figure 45. Signature provider configuration

5.4.7.1 URL parameters

Required parameters from URL of the server:

• Host host name or IP address of the server, accepted symbols as specified in RFC 3986. It is recommended
to use localhost, as the HTTP communication is not secure. For communication to another computer, it is
recommended to implement a proxy server forwarding the communication via a secure channel (HTTPS).

• Port port number of the service, integer number.
• URL prefix REST API prefix, use empty string if there is not any.

5.4.7.2 Payload parameters

Payload parameters are passed as a JSON payload with each request sent to the server. Each parameter is
identified by a unique key and contains a text value. The following keys are reserved for the tool:

• type – used by SPSDK to identify signature provider type;
• host, port, url_prefix – used to specify server connection
• data – used as key for data payload of request
• key_type – used by SEC tool to specify whether image or root key should be used; supported values are IMG

or ROT

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
47 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

• key_index – used by the SEC tool to identify which private key should be used, value is decimal number in
the range 0-3 set by selecting key from build tab ROT1 -> 0, ROT2 -> 1, IMG1_1 -> 0, IMG2_1 -> 1 and so
on.

5.4.7.3 Buttons and Base URL

Remove parameter removes a parameter from the table, remove selected parameter, if no parameter is
selected, remove the last one.

Add parameter adds an empty line below the selected param or at the end of the table.

Base URL displays a URL created from required parameters.

Test connection sends a request for signature length to test whether the server is up and running.

Import public keys imports public keys from the server, request is sent to endpoint ‘public_keys_certs’, the
server response format described in the schema signature_provider_key_tree_schema_v?.json.

5.4.7.4 Signature provider server API

Signature provider API must implement the following three endpoints, and optionally one additional endpoint:

5.4.7.4.1 sign

sign handles signing of the given data block; the request sends the data to be signed with a private key
specified by optional parameters. Example of the signature request for MCX947 with ROT1 or ROT1-IMG1_1
selected as signing key: 'http://localhost:8000/server/sign' json payload:

Certificate signing with ROT1 key:

{
 ″data″: ″hex string of certificate block to be signed″,
 ″key_type″: ″ROT″
 ″key_index″: 0
}

Image signing with IMG1_1 key:

{
 ″data″: ″ hex string of image block to be signed″,
 ″key_type″: ″IMG″
 ″key_index″: 0
}

5.4.7.4.2 signature_length

signature_length returns the signature length in bytes.

5.4.7.4.3 verify_public_key

verify_public_key verifies that the used public key forms a valid key pair with the private key that is on
the server. The public key is sent as a data payload, the RSA key is sent in NXP proprietary format and the
ECC key is sent in DER format. To identify the private key that should be matched with this key, use optional
parameters. In the case of matching keys, return "true".

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
48 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

This API is designed to detect a problem if the server is using a key different from the client's one. For
environments where such validation is not needed, the implementation can return simply "true”.

5.4.7.4.4 public_keys_certs

public_keys_certs is an optional endpoint. If implemented, it allows importing public keys from the Signature
provider dialog into the SEC tool. The SEC tool expects the response from this endpoint to be a tree of
Authentication keys, ROT keys at the top level, and IMG keys as the leaves. The structure of the response is
described in <install_folder>/bin/schema/signature_provider_key_tree_schema_v?.json. Generally, any tree that
can be generated from the Generate keys dialog can be imported, with the limitation of one child key for the root
key. RSA trees do not need to have the same key length for each subkey.

5.4.7.5 Server examples

Server examples are part of the SEC tool distribution. There are Python script examples with the server
implementation. These examples are described in Section 6.12.

5.5 Smart Card management
This view is displayed only for processors that support trust provisioning. (For more information, see the
attached SEC-Tool-Features.xls) It is only enabled if the Smart Card on the toolbar is enabled.

This view allows to:

• Configure a Smart Card
• Create a manufacturing package

• Verify the audit log package received from the factory and extract certificates

Note: For more information, see Section 6.10

5.5.1 Smart Card configuration

This section allows applying OEM assets into the Smart Card. The following items can be configured:

USER KEK A symmetric key for the OEM custom key store. This value can be
specified or a random button can be used to generate a value.

Device identity The checkbox enables the generation of certificates with device
identity. If selected, make sure that Device Identify Configuration
contains all necessary data and select the existing certificate signing
key. For more information, see Section 6.10.7.

Certificate signing key This value is only used for device identity certificates, so the option is
grayed out unless the Device identity checkbox is selected.

Production audit log key Either select the existing PEM key or generate a new key in the PKI
management view.

Production limit A number of processors, that can be provisioned with the Smart Card.

Additionally, the following items are used for the Smart Card configuration (this is processor-specific):

SBKEK This value is specified in the Build image view.
Life cycle This value is specified in the toolbar.
PFR pages The CMPA and CFPA pages binary configuration is created when the

build and the file paths are displayed in the Write image view.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
49 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

dev_hsm_provisioning.sb3 A device provisioning secure binary file generated during the build that
contains CMPA and CFPA pages.

Prepare Smart Card The button for the Smart Card configuration. After you click the button,
it is possible to create either a sealed or non-sealed Smart Card. The
process of Smart Card configuration is described in the Section 6.10
section.

5.5.2 Manufacturing package

The manufacturing package contains all the data needed to start trust provisioning using the Smart Card in the
factory.

No configuration is required, the input data for the manufacturing package are displayed for information only.

The process of creation and import of the Manufacturing package is described in the Trust provisioning workflow
section.

5.5.3 Factory audit logs

This section allows verifying audit logs package received from the factory and optionally extracting device
certificates.

The following items can be configured:

Extract certificates Enable checkbox if the device certificates must be extracted from the
log. If the checkbox is enabled, it is also possible to specify:

Type of the certificate Select the type of certificates to be extracted.
Device certificate
encoding

Select the format of the device certificate to
be extracted.

New or empty target
directory

New or empty directory, where to store the
extracted certificates.

Verify audit logs … The button to start verification of the audit logs package. The package
file selection must be done as the first step of the process. For the
verification, the corresponding production audit log key must be
selected in the Smart Card configuration section. The process of
verification of audit logs is described in the Trust provisioning workflow
section.

5.6 Log
The lower part of the user interface is occupied by the extendable detachable Log view. The view logs
information about the actions performed, including errors.

The log can be detached by the Detached button in the upper-right corner and attached back by closing the
Detached log view.

The information is stored in the <workspace>\log.txt file. The contents of this file are rotated once a threshold is
reached.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
50 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Figure 46. Log view with errors

5.7 Manufacturing Tool
Use Manufacturing Tool to configure provisioning on several devices connected to the host at the same time.
Manufacturing Tool can be accessed from Tools in the Menu bar. The devices can be connected to the
host using USB or UART or SPI or I2C. The user interface is made of these areas: Operation, Command,
Connected Devices, Communication parameters, and the button bar. If trust provisioning is supported for the
processor, there are also Smart Card and Trust provisioning areas.

Figure 47. Manufacturing Tool

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
51 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Operation The Operation area contains radio buttons representing different
operations to choose from.

Write image Performs the same operation as Write
image. Before use, the image must be built
in the Build image view, and the Write
image view must not show any errors.

Apply SB image Uses an SB (Secure Binary) capsule to
update the existing image of the processor.
For LPC55Sxx and RTxxx devices, the SB
file is created during the build secure image
operation and is located in the bootable_
images subfolder of the workspace by
default. For RT10xx/RT116x/RT117x/RT118x
processors, the SB file must be created
manually, as it is currently not supported by
SEC.

Run custom script Uses a custom script to configure
provisioning. It is assumed the script is
a modified SEC write script accepting
SEC parameters (especially connection
parameters). Exit status 0 is considered a
success.

Trust provisioning Performs the trust provisioning operation
using the selected Smart Card. See chapter
Trust provisioning workflow for details.

Command The Command area contains parameters needed for the operation
selected in the Operation area. The parameters vary based on the
selected operation.

Script (Write image,
Run custom script,
Trust Provisioning)

Path to the write or custom script. To locate
the custom script, use the Browse button.

SB file (Apply SB
image)

Path to the SB capsule. To locate the file,
use the Browse button.

Arguments Interactive list of arguments used during the
operation. Use the Default button to revert
any changes. The keywords enclosed in
curly braces in arguments will be replaced
for each manufacturing task. You can find the
complete list of keywords with descriptions in
the tooltip.

Smart Cards Information about Smart Cards used for the trust provisioning
operation. The following items are displayed:

Detected Smart Cards Number of detected cards
Production limit Total limit of all detected cards, number of

processors that can be provisioned
Connection log Detailed information about the Smart Card

connection
Refresh The button to update the information

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
52 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Trust provisioning Configuration of the trust provisioning operation.

Application and
Assert provisioning
firmwares

These file paths are listed for information
only.

Audit log It is possible to specify a path for the audit
log. The log file must be assigned to the
Smart Card, so the file name must contain
the {} suffix that will be replaced by the Smart
Card ID.

Export logs Allow exporting audit into the audit log package. The package can later
be verified.

Connection type Allow selecting a communication interface with the processors.
Connected devices The Connected Devices area contains an interactive table displaying

all connected devices. The tool can detect and program devices
connected using USB only if they are in ISP mode.

• To automatically detect all devices connected to the host for a
selected connection type, use the Autodetect button. It is the
recommended usage. For more information about the USB path, see
section 6.4.1 USB Path.

• To manually add a device, use the Add button.
• To remove a device, use the Remove button or the checkbox in the

Selection column of the table. If the device is de-selected, the next
autodetection keeps the device de-selected.

• To manually modify the device path, change the entry in the
Connection column.

• To view the log containing information about device connection, click
the entry in the Status column.

To test (ping) selected devices, click the Test connection button.
This feature might be useful for UART, SPI, and I2C devices, where
the detection of the communication device (COM port or USB path)
does not imply that the connection with the processor is established.
Therefore, a test connection is recommended before starting the
operation.

Load KeyStore (Apply SB image
for RTxxx)

Load KeyStore from external flash before uploading the SB file.

Communication parameters Communication parameters contain additional operation options.

Baud rate Use the drop-down list to select the
baud rate of the operation. For a detailed
description, see Section 5.1.6.

Button bar The Button bar contains action buttons and displays any warnings and
alerts.

Start Starts the selected and configured operation.
You can observe the progress of the
operation in the adjacent progress bar.

Successfully finished Label with the number of successfully
finished operations. This number is

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
53 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

incremented automatically and stored in the
settings file in the workspace.

Reset The button allows resetting the "Successfully
finished" counter.

Close Closes the Manufacturing Tool without
running the operation.

5.7.1 USB path

The Manufacturing Tool supports the use of Serial, USB, SPI, or I2C connection. In most cases, the Auto-detect
function will be sufficient for detecting the connection. The USB path is used to identify the USB device for
USB, SPI, or I2C communication. It differs depending on the operating system. The description of the USB path
format can be found in SPSDK documentation.

The manufacturing tool supports automatic USB path update, that may happen during the manufacturing
operation because of the following reasons:

1. On some operating systems, the USB path changes after each device reset.
2. RT10xx processors in ISP mode have different VID and PID compared to the VID and PID of the flash

loader application.

After the update, the manufacturing tool automatically executes the second part of the script that finishes the
required operation.

Note: RT10xx devices in ISP mode have different VID and PID compared to VID and PID of flash loader
application, which is uploaded to the target to program the flash. Auto-detect searches for devices with PID&VID
when the target is reset in the ISP mode. If the flashloader is active on the device, reset it into ROM bootloader
mode. The manufacturing process is slightly different: as a first step, the flashloader is uploaded to all boards
and its USB path is retrieved. To find the corresponding USB path for each processor, this operation cannot
be executed in parallel. After this step, the rest of the process is executed in parallel. After manufacturing
is finished, the device flashloader is still active, so the device will not be detected until you have reset the
processor.

5.8 Flash Programmer
Flash Programmer is designed to read/write from the currently selected flash memory and supports all flash
types including internal flash, external NOR and NAND flash, SD card, and eMMC. Flash Programmer can be
accessed from Tools in the Menu bar. The processor can be connected to the host using USB, UART, SPI, or
I2C and must be in ISP mode (as the tool internally uses the blhost protocol). Flash Programmer can be used to
prepare data for writing, or just to display or modify saved memory blocks even if no device is connected. The
left side contains the action toolbar and the right side contains a buffer of the memory content in hexadecimal
and ASCII formats. The tool has additional functionalities: “Auto erase” and “Auto verify”. To display memory
value from some address, fill in the start address into the Address combo and required size (in Bytes) into
the Size combo. Click Read and the value read from memory will be displayed. The result of the operation is
displayed in the bottom-left corner. If the operation ends with failure, more detailed info about the encountered
error is displayed in the tooltip. The settings of the flash programmer window are not saved into the workspace.
They are discarded if the tool is closed.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
54 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Figure 48. Flash programmer tool

Buffer Controls the range of the displayed space on the right.

Address Specifies the start address of the buffered
space. The address cannot go lower or
above the start or end address of the target
memory.

Size The size of the buffer specifies how many
bytes should be read/written

Fill … Opens a dialog that can fill the buffer with
value (byte, word, double word, or random).
Word and double word can be applied as big
or little endian

Clear buffer Clears displayed values and set the size to 0,
does not change the memory state

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
55 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

File on the disk Load … Loads the file into the buffer; .srec
and .hex files are loaded with formatting
(start address), other file types are
processed as binary files without start
address information. The address is the
start address in the buffer where the value
should be loaded, size tells what portion of
data from the start should be loaded. The
loaded data are merged with the existing
buffer context (for example, the buffer can
be extended) and the overlapping areas are
overwritten.

Save … Saves buffer or portion of buffer into a file.
Supported file formats are .srec, .hex
and .bin

Target memory This block provides basic operations on target memory. The hex range
on the top is the working memory range of the selected memory.

Configure Tries to configure the connected memory. It
executes the same memory configuration as
in the Section 5.1.7. If it is memory with FCB,
then the last step of configuration tries to
read the size of the minimal erasable block.
The command is supported for external flash
only, it is disabled for internal flash.

Erasable block size Defines the minimal erasable block size. This
value is read from FCB if available or from
the boot memory configuration for memories
that do not use FCB. If no erasable block
size is found, it is not possible to compute
the erased size.

Erased The address range, which will be erased
by the erase operation. The address range
is determined by the buffer address and
size, and it is aligned to an erasable block
boundary. If the buffer is not aligned with the
erasable block size, a warning is displayed.

Read Reads memory of a given range to fill the
buffer. For memory types with ECC, reading
is not possible if the memory is erased.

Write Writes values in the buffer to the memory,
see also the options "Auto erase" and "Auto
verify"

Verify Checks whether the values in the buffer
match values in memory, values that do not
match are highlighted with red color and
the tooltip displays the value that is in the
memory

Erase Erases memory, always erases the closest
upper multiplication of minimal erasable
block size.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
56 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Blank check Checks if the memory is blank or not
supported for internal flash.

Erase all Erases entire memory.
Auto erase On the write operation, the memory is erased

before writing.
Auto verify After the write operation, verifies that that

buffer was written properly.

Search Search for a value in the buffer; the value can be provided as HEX
numbers grouped as bytes (“FF AA”, “12 A3 00”) or ASCII (“abc”, “hello
world”). The found value is highlighted in blue and the start address is
displayed in the left corner.

5.9 SB editor
The SB editor tool is designed to create custom secure binary files for updates of the SW, data, and/or
processor configuration. The SB editor supports SB formats 2.x and 3.x. The SB editor can be started using the
command main menu > Tools > SB Editor. When the SB editor is opened for the first time, and the workspace
already contains a YAML file with the SB configuration (which is recommended), the SB editor tool offers to
import the file.

SB files are generated using the SPSDK/nxpimage command-line tool, so the SB editor produces a
configuration YAML file that is used as input for nxpimage.

SB editor contains the following main UI parts:

Top buttons bar The bar that allows to import, export, or clear the current configuration.
Properties The view that allows specifying properties for SB file generation
Commands The view that allows specifying the sequence of commands that shall

be executed in the SB file
Output The panel, where the output files (the configuration YAML file and the

resulting SB file) can be specified
Status and bottom buttons The buttons that allow creating manufacturing package and start

manufacturing tool. The OK/Cancel buttons allow closing the SB editor
with or without saving the configuration into the workspace

5.9.1 Properties view

The properties view allows editing general properties and property lists. In case the processor contains any list-
type property, it is selectable on the left side and the right side displays a property editor table. If no list-property
is supported for the processor, the GUI displays just a property editor table.

The property editor table contains the following columns:

Group The properties are logically grouped (for information only).

Property Name of the property (for information only)
Value The value of the property. If the value is not specified, there is an empty

string. The value can be of the following type: integer number; string;
predefined options (drop-down list), which include logical type (#true/
#false); file path

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
57 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Resolved value In case the value is specified in the form of ${variable}, this column
contains the value of the variable; otherwise, it is the same as the
value.

The property description is displayed in a tooltip.

If the property value is a file path, it is possible to open a browse dialog by double-clicking the property name.

5.9.2 Commands view

The view allows specifying the sequence of the commands that will be stored in the SB file and must be
executed in the target processor. There are two types of commands: high-level and low-level. High-level
command sequences are sequences of low-level commands that are typically used in SB files. These
commands are visible in the GUI only to simplify the edition of the SB file and will be replaced by low-level
commands during the generation of the configuration YAML file. The names of all high-level commands start
with "$". High-level commands do not have any arguments, and the parameters of the commands inside cannot
be modified. However, it is always possible to replace a high-level command by a set of the corresponding low-
level commands and then customize the low-level commands. High-level commands may contain an optional
low-level command that is stored into YAML only if all variables for the low-level command are defined. This is
used if a high-level command might be extended in some configurations. Use a high-level command instead of
a low-level command, as high-level commands are updated with the configuration.

The commands page contains the following panels:

The command sequence It is the current command sequence. It is possible to select whether
there will be displayed $ variables or real values.

Buttons bar The bar is used to control the command sequence with the following
buttons:

• Add – to add the selected command into the current sequence.

• Delete – to remove the selected command from the current
sequence.

• Move – to move the selected command up or down in the
current sequence.

• Expand – to expand a high-level command sequence into the list
of low-level commands.

All available commands The tree with all available commands is divided into “High-level
command sequences” and “Low-level commands”.

Variables Table of $ variables applicable as command arguments. It is possible
to select whether the table should contain all variables or command-
specific variables (the property-specific variables will be not be
displayed).

Selected command This panel shows the parameters of the selected command in a table.

The parameters for the selected command can be specified in the table at the bottom of the commands page.
The first column represents the command itself and the other columns represent the command parameters. If
the parameter is required, not specifying it results in an error. The description of the parameter is displayed as
a tooltip. Use ${variable} for parameter values, because these variables are updated within the SEC tool
configuration.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
58 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

For a high-level command, an informative description is displayed instead of a parameter.

5.9.3 $ Variables

To allow reusage of a SEC tool configuration for the SB file generation, $ variables are provided. Names of
these variables consist of the $ character and the name is enclosed in curly braces (for example, ${family}).
The variables are used for properties and command parameters. For properties, the $ variable name matches
the name of the property. The list of all variables can be found on the Commands page at the right. It is possible
to filter the variables to hide variables for "properties" or display all variables. The variables are not editable;
however, it is possible to copy the name or value into the clipboard.

5.9.4 Creating a manufacturing package button

If the SB file is applied on another computer (or in a factory), it is possible to create a manufacturing package
that contains all the needed files. The package can be imported on another computer, see Section 5.1.4.1 .

5.9.5 To Manufacturing button

The button allows opening the Manufacturing Tool and applying the created SB file into a processor without
creating a manufacturing package.

6 Workflow

This chapter takes you through the steps you must take to successfully boot up your device to the required
security level. It describes the creation of the bootable image, connecting your device, setting up your boot
preferences, and writing the image into the selected boot memory. Common steps are described first, followed
by device family-specific content. It is assumed the image is executed on an NXP evaluation board.

This chapter addresses image preparation for the following toolchains:

• MCUXpresso IDE 11
• Keil MDK 5 μVision
• IAR Embedded Workbench 8

On the following pages you will learn how to:

• Get MCUXpresso SDK with an example project for a processor
• Open an example project for the processor in the toolchain
• Start with SEC
• Prepare asymmetric keys
• Build a plain image in the selected toolchain
• Build a bootable image by SEC
• Connect the NXP evaluation board
• Write a bootable image into the processor and (optionally) secure the processor and advance the life cycle

6.1 Common steps

6.1.1 Downloading MCUXpresso SDK

The MCUXpresso SDK offers open source drivers, middleware, and reference example applications to speed
your software development. In this section, you can find information about downloading MCUXpresso SDK as a
ZIP package or as a CMSIS pack and how to open an example project from the package. It is recommended to

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
59 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

start with iled_blinky example, because it offers a simple check whether the resulting application is working –
LED flashes with a 1 sec period.

• Downloading MCUXpresso SDK package for MCUXpresso IDE
1. Visit http://mcuxpresso.nxp.com.
2. Select your board.
3. Build SDK package for the selected toolchain and download it.

Note: Starting with MCUXpresso IDE v11.1.0, you can download and install the MCUXpresso SDK package
directly in the tool.

• Downloading MCUXpresso SDK CMSIS pack
Alternatively, for MDK µVision and IAR Embedded Workbench you can download CMSIS packs for the
selected processor and board:
– Device Family Pack (DFP): NXP.{processor}_DFP.#.#.#.pack
– Board Support Pack (BSP): NXP.EVK-{processor}_BSP.#.#.#.pack

• Downloading an example project for Keil MDK or IAR Embedded Workbench
For Keil MDK or IAR Embedded Workbench, it is also possible to download a single example project only.
Once you have SDK build available on MCUXpresso SDK Dashboard, click the download link and select
Download Standalone Example Project. This project contains all sources and project files needed for the
build.

6.1.2 Opening example project

• MCUXpresso IDE
1. Drag-and-drop the downloaded MCUXpresso SDK package into the Installed SDKs view to install the

package.
2. Select File > New > Import SDK examples....
3. Select your processor and board and on the next page select the iled_blinky example.

• Keil MDK 5 + Example package
1. Unpack the SDK package into the selected folder and open boards\evkmimxrt10##\demo_apps\led_blinky

\mdk\iled_blinky.uvmpw.
2. If you have downloaded a single example project only, unzip it into the selected folder and open the

workspace file.
3. Go to Project > Options > Output to ensure the option Create HEX File is selected.

• Keil MDK 5 + CMSIS packs
1. Select Project > Manage > Pack Installer.
2. In the Devices view, select All Devices > NXP > MIMXRT10##.
3. In the Packs view, ensure that the following device-specific packs are installed: NXP::{processor}#_DFP

and NXP::EVK-{processor}_BSP.
4. Select the BSP pack
5. In the Examples view, copy the iled_blinky example project into the selected folder.

Go to Project > Options > Output to ensure the option Create HEX File is selected.
• IAR Embedded Workbench + MCUXpresso SDK package

1. Unpack the SDK package into the selected folder and open boards\evkmimxrt10##\demo_apps\led_blinky
\iar\iled_blinky.eww.

2. If you have downloaded a single example project only, unzip it into the selected folder and open the
workspace file.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
60 / 129

http://mcuxpresso.nxp.com
http://mcuxpresso.nxp.com

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

6.1.3 Building example project

Detailed information about project configuration and build is in the processor-specific sections below. For a
quick evaluation, there are binary SDK examples for NXP evaluation boards provided in the installation layout.
For details, refer to the installation sub-folder <SEC>/bin/data/targets/{processor}/source_images.

6.1.4 Setting up Secure Provisioning Tool

1. Start MCUXpresso Secure Provisioning Tool:
• Windows: Double-click the desktop shortcut, or use the Windows Start menu to locate the tool.
• MacOS: Click the shortcut in the Dock, or use the Launchpad to locate the tool.
• Linux: Click the shortcut in the Launcher, or use the Dash to locate the tool.

2. Create a new workspace by selecting File > New Workspace ... from the Menu bar. Select the device
series and the processor and click Create.

3. Connect the device to the host through USB, UART, SPI or I2C.
4. Confirm that the connection is working by selecting Target > Connection ... from the Menu bar and clicking

the Test button. Tweak if necessary.

6.1.5 Preparing secure keys

This section describes the generation of keys necessary for authenticated or encrypted image creation. This
operation is done only once and the keys can be used for all use-cases.

1. Set Boot type to any secured boot type, for example, Signed or Authenticated.

2. Select the PKI management view.

3. Ensure it does not already contain keys.

4. Click Generate keys.

5. In the Generate keys dialog, confirm default settings and click Generate.

6. Set Boot type back to Unsigned mode. It is recommended to start with the Unsigned mode and verify the
unsigned image works on the board. Once unsigned mode is working, you can continue to secured mode and
the generated keys will be used.

NOTE: The generated keys are generated in crts/ and keys/ subfolders in the workspace. It is recommended to
back up generated keys before they are burned into fuses in the processor.

6.2 RT10xx/RT116x/RT117x device workflow
This section describes the RT10xx/RT116x/RT117x device workflow in detail.

6.2.1 Preparing source image

In this step, you must select the target memory where the image will be executed. The following options are
available for RT10xx/RT116x/RT117x devices:

• Image running from an external NOR flash
It is the so-called XIP(eXecution In Place) image, which means the image is executed directly from the
memory where it is located.

• Image running in internal RAM
This image can be on an SD card/eMMC or in external flash (FlexSPI NOR, FlexSPI NAND, or SEMC NAND)
and will be copied into internal RAM and executed from there during the boot.

• Image running in SDRAM

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
61 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

This image can be located in an SD card or external flash (FlexSPI NOR, FlexSPI NAND, or SEMC NAND)
and during boot will be copied into SDRAM and executed from there.

6.2.1.1 Image running from external NOR flash

• MCUXpresso IDE
The led_blinky example is linked into external flash by default.
1. Optionally go to Project > Properties > C/C++ Build > Settings > MCU C Compiler > Preprocessor

> Defined symbols and set XIP_BOOT_HEADER_ENABLE to 0. This step is now optional, because a
bootable image can be used as input on the build tab.

2. Build the image.
You will find the resulting source image as Debug\evkmimxrt10##_iled_blinky.axf. You can later use it as
Source executable image by SEC.

• Keil MDK 5
1. In the toolbar, select iled_blinky flexspi_nor_debug target.
2. In Project > Options > "*C/C++*", disable define symbol XIP_BOOT_HEADER_ENABLE=0 (set to 0).

This step is now optional, because a bootable image can be used as input on the build tab.
3. In Project > Options > Linker, remove all --keep options and the predefined symbol

XIP_BOOT_HEADER_ENABLE. As a result, Misc. controls contains only --remove.
4. Build the image.

You will find the output image as boards\evkmimxrt10##\demo_apps\led_blinky\mdk\flexspi_nor_debug
\iled_blinky.hex.

• IAR Embedded Workbench
1. In Project > Edit Configurations …, select flexspi_nor_debug
2. In Project Options > C/C++ Compiler >Preprocessor>Defined Symbols, add or change the existing

XIP_BOOT_HEADER_ENABLE define to 0.This step is now optional, because a bootable image can be
used as input on the build tab.

3. On multicore processors set the Processor variant in Project > Options... > General Options > Target,
for example Cortex-M7 for iled_blinky_cm7 on RT1176.

4. Build the image.
You will find the output image as boards\evkmimxrt10##\demo_apps\led_blinky\iar\flexspi_nor_debug
\iled_blinky.out.

6.2.1.2 Image running in internal RAM

Note: Memory addresses and sizes in this section are used as an example and depend on the selected
processor.

• MCUXpresso IDE
1. Select Project > Properties - C/C++ Build > Settings > Tool Settings > MCU Linker > Managed

Linker Script and check Link application to RAM.
2. In Project > Properties > C/C++ Build > MCU settings, delete Flash, and modify SRAM_ITC to start at

0x3000 with size 0x1D000.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
62 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Figure 49. SRAM_ITC
3. Move SRAM_ITC to the first position to make it default.
4. Build the image.

You can find the resulting source image named Debug\evkmimxrt10##_iled_blinky.axf.
• Keil MDK 5

1. In the toolbar, select iled_blinky debug target.
2. Open Project > Options > Linker and click Edit to edit the Scatter file.
3. Close the window and make the following changes in the linker file (changes highlighted):

#define m_interrupts_start 0x00003000
#define m_interrupts_size 0x00000400

#define m_text_start 0x00003400
#define m_text_size 0x0001DC00

4. Build the image.
You can find the resulting image as boards\evkmimxrt10##\demo_apps\led_blinky\mdk\debug\iled_blinky.
hex.

• IAR Embedded Workbench
1. Select Project < Edit Configurations … > Debug.
2. Open file MIMXRT10##xxxxx_ram.icf from project root folder and make the following changes:

define symbol m_interrupts_start = 0x00003000;
define symbol m_interrupts_end = 0x000033FF;

define symbol m_text_start = 0x00003400;
define symbol m_text_end = 0x0001FFFF;

3. On multicore processors set the Processor variant in Project > Options... > General Options > Target,
for example Cortex-M7 for iled_blinky_cm7 on RT1176.

4. Save the changes and build the image.
You can find the resulting image built as boards\evkmimxrt10##\demo_apps\led_blinky\iar\debug\iled_
blinky.out.

6.2.1.3 Image running from external SDRAM

• MCUXpresso IDE
1. Select Project > Properties - C/C++ Build > Settings > Tool Settings > MCU Linker > Managed

Linker Script and check Link application to RAM.
2. Select Project > Properties - C/C++ Build > Settings > Tool Settings > MCU C Compiler >

Preprocessor and add defined symbol SKIP_SYSCLK_INIT=1.
3. In Project > Properties > C/C++ Build > MCU settings, delete Flash, and modify BOARD_SDRAM to

start at 0x80002000 with size 0x1dfe000. Move BOARD_SDRAM to first position to make it default.
4. Build the image.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
63 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

You can find the resulting source image named Debug\evkmimxrt10##_iled_blinky.axf.
• Keil MDK 5

1. In the toolbar, select iled_blinky sdram_debug target.
2. Open Project > Options > Linker and click Edit to edit Scatter file.
3. Close the window and make the following changes in the linker file (changes highlighted):

#define m_interrupts_start 0x80002000
#define m_interrupts_size 0x00000400

#define m_text_start 0x80002400
#define m_text_size 0x0001DC00

#define m_data_start 0x80020000
#define m_data_size 0x01DE0000

4. Build the image.
You can find the resulting image as boards\evkmimxrt10##\demo_apps\led_blinky\mdk\sdram_debug
\iled_blinky.hex.

• IAR Embedded Workbench
1. Select Project > Edit Configurations … > sdram_debug.
2. Open file MIMXRT10##xxxxx_sdram.icf from project root folder and make the following changes:

define symbol m_interrupts_start = 0x80002000;
define symbol m_interrupts_end = 0x800023FF;

define symbol m_text_start = 0x80002400;
define symbol m_text_end = 0x8001FFFF;

define symbol m_data_start = 0x80020000;
define symbol m_data_end = 0x8002FFFF;

define symbol m_data2_start = 0x80200000;
define symbol m_data2_end = 0x8023FFFF;

define symbol m_data3_start = 0x80300000;
define symbol m_data3_end = 0x81DFFFFF;

define symbol m_ncache_start = 0x81E00000;
define symbol m_ncache_end = 0x81FFFFFF;

3. On multicore processors set the Processor variant in Project > Options... > General Options > Target,
for example Cortex-M7 for iled_blinky_cm7 on RT1176.

4. Save the changes and build the image.
You can find the resulting image built as boards\evkmimxrt10##\demo_apps\led_blinky\iar\sdram_debug
\iled_blinky.out.

6.2.2 Connecting the board

This section contains information about configuring the following evaluation boards and connecting them to
SEC:

• MIMXRT1010-EVK
• MIMXRT1015-EVK
• MIMXRT1020-EVK
• MIMXRT1024-EVK
MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
64 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

• MIMXRT1040-EVK
• MIMXRT1050-EVKB
• MIMXRT1060-EVK
• MIMXRT1064-EVK
• MIMXRT1160-EVK
• MIMXRT1170-EVKB

1. See Table 3 for instructions on how to set boot mode using DIP switches.
2. Make sure you have J1 (J38 on RT1176, RT1166) set to 3-4 to power the board from USB OTG.
3. Connect to the J9 (J20 on RT1176, RT1166) port with the USB cable to your PC.
4. Ensure that SEC is already running with a workspace created for the chosen device. For more information,

see Setting up SEC.
5. Make sure that the Boot memory in the toolbar matches the NOR flash used on the EVK board (for

example flex-spi-nor/ISxxxx).
6. Set the connection to USB and test the board connection.

Booting from SD card

For booting from an SD card, do the following:

1. Insert a micro SDHC card into the board.
2. In the MCUXpresso Secure Provisioning Tool, select Boot memory: sdhc_sd_card/SDHC SD card 8 GB

in the Toolbar.

Boot mode/
Device

Serial
bootloader
(ISP mode)

Flex-SPI
NOR (QSPI,
Hyper
Flash)

Flex-SPI NOR +
Encrypted XIP
(BEE/OTFAD/IEE)

SD card eMMC SEMC
NAND

FlexSPI
NAND

RT1010-EVK

RT1015-EVK

N/A

RT1020-EVK

RT1024-EVK

SW8: 0001 SW8: 0010 SW8: 0010

SW8: 0110

RT1040-EVK SW4: 0001 SW4: 0010 SW4: 0010 or 0110
SW2: 1000

SW4: 1010

N/A N/A N/A

RT1050-EVKB SW7: 0110

RT1060-EVK

RT1064-EVK

SW7: 0001

SW7: 0010

SW7: 0010 or 0110
SW5: 1000

SW7: 1010 N/A N/A N/A

RT1160-EVK

RT1170-EVKB

SW1: 0001
SW2: 00000
00000

SW1: 0010
SW2: 00000
00000

SW1: 0010
SW2: 0100000000

SW1: 0010
SW2: 00000
01000

SW1: 0010
SW2: 00000
00100

SW1: 0010
SW2: 00000
10000

N/A

Table 3. DIP Switches: Boot mode selection for EVKs

6.2.3 Booting images

This section describes the building and writing of bootable images.

You can use several combinations of used memories:

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
65 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Memory where the image is
executed

Memory where the image is
written

DCD/XMCD needed XIP

External NOR flash1 External NOR flash No Yes

Internal RAM External NOR or NAND flash No No

Internal RAM SD card or eMMC No No

SDRAM External NOR or NAND flash Yes No

SDRAM SD card or eMMC Yes No

1. For RT116x/7x devices, two FlexSPI instances are supported. There is the FLEXSPI_INSTANCE fuse (BOOT_
CFG2[3])/GPIO boot pin which determines which FlexSPI instance to use. Set a corresponding GPIO boot pin to use
Instance 2 without burning the fuse.

Table 4. Booting image

Note:

• Memory, where the image is executed - Explained in Section 6.2.1.
• Memory, where the image is written - Configured as Boot memory in SEC.

6.2.3.1 Booting unsigned image

An unsigned image is typically used for development. It is recommended to start with this boot type before
working with secured images to verify that the executable image works properly.

First, build a bootable image:

1. Make sure you have selected the Unsigned boot type in the Toolbar.
2. Switch to the Build image view.
3. Select the image built in Section 6.2.1 as a Source executable image.
4. For images executed from SDRAM, configure SDRAM using DCD or XMCD (RT116x/7x). For EVK boards,

the following DCD file can be used: data\targets\MIMXRT1###/evkmimxrt1xxx_SDRAM_dcd.
bin. For RT116x/7x, the following XMCD configuration file can be used: data\targets\MIMXRT11##/
evkmimxrt11xx_xmcd_semc_sdram_simplified.yaml.
Note: For customization of DCD files, refer to Section 6.2.4.

5. If needed, open Dual image boot and configure (supported only for RT116x/7x and FlexSPI NOR).
6. Click the Build image button to build a bootable image.

When the bootable image has been successfully built:

1. Make sure that the board is in Serial Boot mode.
2. Switch to the Write image view.
3. Make sure that the Use built image check-box is selected.
4. Click the Write image button.

If the write operation was successful, switch boot mode (see Table 3) and reset the board.

6.2.3.2 Booting authenticated (HAB) image

This section describes the building and writing of an authenticated image. If you want to use an encrypted
image, you can skip this step.

1. In the Toolbar set the Boot type to Authenticated (HAB).
2. In the Build image view, use the image from Section 6.2.1 as a Source executable image.
3. For Authentication key select any key, for example, SRK1: IMG1_1+CSF1_1.
4. If needed, open Dual image boot and configure. (RT116x/7x - FlexSPI NOR)

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
66 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

5. Select the HAB Closed life cycle.
6. Click the Build image button.
7. Check that the bootable image was built successfully.

To write the image, switch to Write image view.

1. Make sure that the board is set to Serial bootloader (ISP) mode. See Table 3 for more information.
2. Make sure that the Use built image checkbox is selected.
3. Click the Write image button.
4. In the following window, confirm to write fuses:

• Yes - Continue writing the image and burning fuses.
Note: Burning fuses can only be done once, after that the processor can only execute authenticated
images.

• No - Do not burn fuses, continue writing the image.
• Cancel - Abort writing the image and burning fuses.

Figure 50. Burn fuses

If the write operation was successful, switch boot mode (see Table 3) and reset the board.

6.2.3.3 Booting encrypted (HAB) image

This section describes the building and writing of an encrypted image. This image will be decrypted into RAM
during booting operation, so an XIP image cannot be used.

To build the image, do the following:

1. In the Toolbar set the Boot type to Encrypted (HAB).
2. As a Source executable image, use the image from Section 6.2.1 as a Source executable image.
3. For Authentication key select any key, for example, SRK1: IMG1_1+CSF1_1.
4. If needed, open Dual image boot and configure. (RT116x/7x - FlexSPI NOR)
5. Select the HAB Closed life cycle.
6. Click the Build image button.
7. Check that the bootable image was built successfully.

To write the image, do the following:

1. Switch to Write image view.
2. Make sure that the board is set to Serial bootloader (ISP) mode. See Table 3 for more information.
3. Make sure that the Use built image checkbox is selected.
4. Click the Write image button.
5. In the following window, confirm to write fuses:

• OK - Continue writing the image and burning fuses.
Note: Burning fuses can only be done once, after that the processor can only execute authenticated
images.

• Cancel - Abort writing the image and burning fuses.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
67 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Figure 51. Burn fuses

If the write operation was successful, switch boot mode (see Table 3) and reset the board.

Note: Part of the encrypted image is a DEK key blob encrypted using a master key from the processor. This
master key is specific for each processor and cannot be used for another processor.

Note: RT101x and RT102x processors do not support running encrypted images in the NOR flash. In case no
other booting device is supported for those processors, the Encrypted (HAB) boot type is not available.

6.2.3.4 Booting XIP encrypted image (BEE OTPMK) authenticated (RT10xx)

This section describes the building and writing of an XIP encrypted image using the OTP master key. An
authenticated image is built and then encrypted on-the-fly during the write operation. The source image for the
encrypted XIP with the BEE feature must be an XIP image.

To build the image, do the following:

1. In the Toolbar, set the Boot type to XIP encrypted (BEE OTPMK) authenticated.
2. As a Source executable image, use the image running from external NOR flash from Section 6.2.1 as a

Source executable image.
3. For Authentication key, select any key, for example, SRK1: IMG1_1+CSF1_1.
4. Click XIP encryption (BEE OTPMK) to open the BEE OTPMK window. In the window, keep the default

settings to encrypt the whole image or configure your own FAC Protected Region ranges within the first BEE
encrypted region.

5. Select the HAB Closed life cycle.
6. Click the Build image button.
7. Check that the bootable image was built successfully.

To write the image, do the following:

1. Switch to Write image view.
2. Make sure that the board is set to Serial bootloader (ISP) mode. See Table 3 for more information.
3. Make sure that the Use built image checkbox is selected.
4. Enable XIP encryption by setting a corresponding GPIO pin (see Table 3 for more information).
5. Click the Write image button.
6. In the following window, confirm to write fuses:

• OK - Continue writing the image and burning fuses.
Note: Burning fuses can only be done once, after that the processor can only execute authenticated
images.

• Cancel - Abort writing the image and burning fuses.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
68 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Figure 52. Burn fuses

If the write operation was successful, switch boot mode (see Table 3) and reset the board.

Note: Step 5 can be replaced by setting the EncryptedXIP fuse in the OTP configuration.

6.2.3.5 Booting XIP encrypted image (BEE user keys) unsigned (RT10xx)

This section describes the building and writing of an XIP encrypted image using user keys. The image itself
is built in two steps. First, the unsigned bootable image is built and then this unsigned image is encrypted for
use with enabled encrypted XIP. The source image for the encrypted XIP with the BEE feature must be an XIP
image.

To build the image, do the following:

1. In the Toolbar, set the Boot type to XIP encrypted (BEE user keys) unsigned.
2. As a Source executable image, use the image external NOR flash from Section 6.2.1 as a Source

executable image.
3. Click XIP encryption (BEE user keys) to open the BEE user keys window. In the window, keep the default

settings to encrypt the whole image, or edit User keys data to provide your specific key. Furthermore, the
window allows you to configure additional BEE parameters (Both regions (engines), user key(s) for regions,
FAC Protected Region ranges, random key generation).

4. Click the Build image button.
5. Check that the bootable image was built successfully.

To write the image, do the following:

1. Switch to Write image view.
2. Make sure that the board is set to Serial bootloader (ISP) mode. See Table 3 for more information.
3. Ensure that Use built image checkbox is selected.
4. Enable XIP encryption by setting a corresponding GPIO pin (see Table 3 for more information).
5. Click the Write image button.
6. In the following window, confirm to write fuses:

• OK - Continue writing the image and burning fuses.
Note: Burning fuses can only be done once, after that it is not possible to modify them.

• Cancel - Abort writing the image and burning fuses.

Figure 53. Burn fuses

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
69 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

If the write operation was successful, switch boot mode (see Table 3) and reset the board.

Note: Step 5 can be replaced by setting the EncryptedXIP fuse in the OTP configuration.

6.2.3.6 Booting XIP encrypted image (BEE user keys) authenticated (RT10xx)

This section describes the building and writing of an XIP encrypted image using user keys. The image itself is
built in two steps. First, the authenticated bootable image is built and then this authenticated image is encrypted
for use with enabled encrypted XIP. The source image for the encrypted XIP with the BEE feature must be an
XIP image.

To build the image, do the following:

1. In the Toolbar set the Boot type to XIP encrypted (BEE user keys) authenticated.
2. As a Source executable image, use the image external NOR flash from Section 6.2.1 as a Source

executable image.
3. For Authentication key, select any key, for example, SRK1: IMG1_1+CSF1_1.
4. Click XIP encryption (BEE user keys) to open the BEE user keys window. In the window, keep the default

settings to encrypt the whole image, or edit user keys data to provide your specific key. Additionally, the
window allows you to configure additional BEE parameters (Both regions (engines), user key(s) for regions,
FAC Protected Region ranges, random key generation).

5. Select the HAB Closed life cycle.
6. Click the Build image button.
7. Check that the bootable image was built successfully.

To write the image, do the following:

1. Switch to Write image view.
2. Make sure that the board is set to Serial bootloader (ISP) mode. See Table 3 for more information.
3. Ensure that Use built image checkbox is selected.
4. Enable XIP encryption by setting a corresponding GPIO pin (see Table 3 for more information).
5. Click the Write image button.
6. In the following window, confirm to write fuses:

• OK - Continue writing the image and burning fuses.
Note: Burning fuses can only be done once, after that the processor can only execute authenticated
images.

• Cancel - Abort writing the image and burning fuses.

Figure 54. Burn fuses

If the write operation was successful, switch boot mode (see Table 3) and reset the board.

Note: Step 5 can be replaced by setting the EncryptedXIP fuse in the OTP configuration.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
70 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

6.2.3.7 Booting XIP encrypted image (OTFAD OTPMK) authenticated (RT10xx)

This section describes building and writing of an XIP encrypted image using the OTP master key. The
authenticated image is built and then encrypted on-the-fly during the write operation. The source image for the
encrypted XIP with the OTFAD feature must be an XIP image.

To build the image, do the following:

1. In the Toolbar, set the Boot type to XIP encrypted (OTFAD OTPMK) authenticated.
2. As a Source executable image, use the image running from external NOR flash from Section 7.2.1 as a

Source executable image.
3. For Authentication key, select any key, for example, SRK1: IMG1_1+CSF1_1.
4. Click XIP encryption (OTFAD OTPMK) to open the OTFAD OTPMK window. In the window, keep the

default settings to encrypt the whole image or configure your own Protected Region ranges.
5. Select the HAB Closed life cycle.
6. Click the Build image button.
7. Check that the bootable image was built successfully.

To write the image, do the following:

1. Switch to Write image view.
2. Make sure that the board is set to Serial bootloader (ISP) mode. See Table 6 for more information.
3. Make sure that the Use built image checkbox is selected.
4. Click the Write image button.
5. In the following window, confirm to write fuses:

• OK - Continue writing the image and burning fuses.
Note: Burning fuses can only be done once, after that the processor can only execute authenticated
images.

• Cancel - Abort writing the image and burning fuses.

Figure 55. Burn fuses

If the write operation was successful, switch boot mode (see Table 6) and reset the board.

6.2.3.8 Booting OTFAD encrypted image unsigned with user keys.

This section describes the building and writing of an OTFAD encrypted image. The image itself is built in two
steps.

To build the image, do the following:

1. In the Toolbar set Boot Type to Encrypted, (OTFAD) unsigned for RT116x/7x or XIP encrypted (OTFAD
user keys) unsigned for RT10xx.

2. As Source executable image, use the image external NOR flash from Preparing source image as a
Source executable image.

3. Click OTFAD encryption/ XIP encryption (OTFAD user keys) to open the OTFAD Configuration window.
In the window set random keys. The window allows you to configure the number of OTFAD regions

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
71 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

(contexts), KEK source (OTP or PUF KeyStore), KEK, Key scramble, user keys for regions, regions ranges,
random key generation.

4. Open OTP configuration and review the settings and fix any reported problems.
5. Click the Build image button.
6. Check that the bootable image was built successfully.

To write the image, do the following:

1. Switch to Write image view.
2. Make sure that the board is set to Serial bootloader (ISP) mode. See Table 3 for more information.
3. Reset the board if the OTFAD KEK source is set to PUF KeyStore. It is necessary so that the key store is

enrolled successfully.
4. Ensure that Use built image checkbox is selected.
5. Enable XIP encryption (RT116x/7x) by setting a corresponding GPIO pin (see Table 3 for more information).
6. Click the Write image button.
7. In the following window, confirm to write fuses:

• OK - Continue writing the image and burning fuses.
Note: Burning fuses can only be done once, after that it is not possible to modify them.

• Cancel - Abort writing the image and burning fuses.

Figure 56. Burn fuses

If the write operation was successful, switch boot mode (see Table 3) and reset the board.

Note: Step 6 (RT116x/7x) can be replaced by setting the ENCRYPT_XIP_EN fuse in the OTP configuration.

6.2.3.9 Booting OTFAD encrypted image authenticated with user keys

This section describes the building and writing of an OTFAD encrypted image. The image itself is built in two
steps. First, the authenticated bootable image is built and then this authenticated image is encrypted for use
with OTFAD. The source image for the OTFAD feature must be an XIP image.

To build the image, do the following:

1. In the Toolbar set Boot type to Encrypted (OTFAD) authenticated for RT116x/7x or XIP encrypted
(OTFAD user keys) authenticated for RT10xx.

2. As a Source executable image, use the image external NOR flash from Preparing source image as a
Source executable image.

3. Ensure you have keys generated in the PKI management view. For more information, see PKI
management.

4. For Authentication key select any key, for example, SRK1: IMG1_1+CSF1_1.
5. Click OTFAD encryption / XIP encryption (OTFAD user keys) to open the OTFAD configuration window.

In the window set random keys. The window allows you to configure the number of OTFAD regions
(contexts), KEK source (OTP or KeyStore), KEK, Key scramble, user keys for regions, regions ranges,
random key generation.

6. Select the HAB Closed life cycle.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
72 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

7. Open OTP configuration and review the settings and fix any reported problems.
8. Click the Build image button.
9. Check that the bootable image was built successfully.

To write the image, do the following:

1. Switch to Write image view.
2. Make sure that the board is set to Serial bootloader (ISP) mode. See Table 3 for more information.
3. Reset the board if the OTFAD KEK source is set to KeyStore. It is necessary so that the KeyStore is

enrolled successfully
4. Ensure that Use built image checkbox is selected.
5. Enable XIP encryption (RT116x/7x) by setting a corresponding GPIO pin (see Table 3 for more information).
6. Click the Write image button.
7. In the following window, confirm to write fuses:

• OK - Continue writing the image and burning fuses.
Note: Burning fuses can only be done once, after that the processor can only execute authenticated
images.

• Cancel - Abort writing the image and burning fuses.

Figure 57. Burn fuses

If the write operation was successful, switch boot mode (see Table 3) and reset the board.

Note: Step 6 (RT116x/7x) can be replaced by setting the ENCRYPT_XIP_EN fuse in OTP configuration.

6.2.3.10 Booting IEE encrypted image unsigned (RT116x/7x)

This section describes how to build and write an IEE encrypted image. The image itself is built in two steps.
First, the unsigned bootable image is built, and then this unsigned image is encrypted for use with the IEE. The
source image for the IEE feature must be an XIP image.

To build the image, do the following:

1. In the Toolbar set the Boot type to Encrypted (IEE) unsigned.
2. As a Source executable image, use the image external NOR flash from Preparing source image as a

Source executable image.
3. Click IEE encryption to open the IEE Configuration window. In the window set random keys. The window

allows you to configure the number of IEE regions (contexts), KEK, AES encryption mode, and user keys for
regions, regions ranges, random key generation.

4. Open the OTP configuration, review the settings, and fix any reported problems.
5. Click the Build image button.
6. Check that the bootable image was built successfully.

To write the image, do the following:

1. Switch to the Write image view.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
73 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

2. Make sure that the board is set to Serial bootloader (ISP) mode. See Table 6 for more information.
3. Reset the board. It is required for successful key store enrollment.
4. Ensure that the Use built image checkbox is selected.
5. Enable XIP encryption by setting a corresponding GPIO pin (see Table 6 for more information).
6. Click the Write image button.
7. In the following window, confirm to write fuses:

OK - Continue writing the image and burning fuses.
Note: Burning fuses can only be done once, after that it is not possible to modify them.
Cancel - Abort writing the image and burning fuses.

Figure 58. Burn fuses

If the write operation was successful, switch boot mode (see Table 6) and reset the board.

Note: Step 5 can be replaced by setting the ENCRYPT_XIP_EN fuse in the OTP configuration.

6.2.3.11 Booting IEE encrypted image authenticated (RT116x/7x)

This section describes how to build and write an IEE encrypted image. The image itself is built in two steps.
First, the unsigned bootable image is built, and then this unsigned image is encrypted for use with the IEE. The
source image for the IEE feature must be an XIP image.

To build the image, do the following:

1. In the Toolbar set the Boot type to Encrypted (IEE) authenticated.
2. As a Source executable image, use the image external NOR flash from Preparing source image as a

Source executable image.
3. Ensure you have keys generated in the PKI management view. For more information, see Section 5.4.
4. For Authentication key select any key, for example, SRK1: IMG1_1+CSF1_1.
5. Click IEE encryption to open the IEE Configuration window. In the window set random keys. The window

allows you to configure the number of IEE regions (contexts), KEK, AES encryption mode, and user keys for
regions, regions ranges, random key generation.

6. Select the HAB Closed life cycle.
7. Open the OTP configuration, review the settings, and fix any reported problems.
8. Click the Build image button.
9. Check that the bootable image was built successfully.

To write the image, do the following:

1. Switch to Write image view.
2. Make sure that the board is set to Serial bootloader (ISP) mode. See Table 6 for more information.
3. Reset the board. It is required for successful key store enrollment.
4. Ensure that the Use built image checkbox is selected.
5. Enable XIP encryption by setting a corresponding GPIO pin (see Table 6 for more information).
6. Click the Write image button.
7. In the following window, confirm to write fuses:

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
74 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

OK - Continue writing the image and burning fuses.
Note: Burning fuses can only be done once, after that it is not possible to modify them.
Cancel - Abort writing the image and burning fuses.

Figure 59. Burn fuses

If the write operation was successful, switch boot mode (see Table 6) and reset the board.

Note: Step 6 can be replaced by setting the ENCRYPT_XIP_EN fuse in the OTP configuration.

6.2.4 Creating/Customizing DCD files

It is recommended to use MCUXpresso Config Tools or MCUXpresso IDE to prepare a DCD binary file.

1. In any of the tools open any project/configuration for the selected processor.
2. Import existing DCD configuration from an SDK source code by selecting File > Import > MCUXpresso

Config Tools > Import Source.
3. Select the file from SDK package in boards\evkmimxrt10##\xip\evkmimxrt10##_sdram_ini_dcd.c.
4. Switch to the Device Configuration tool by selecting Menu bar > Config Tools > Device Configuration.
5. In the toolbar of the DCD view, select Output Format to binary.
6. Navigate to Code Preview and in the toolbar click the Export button and select the location where to

generate a binary file.
Note: Refer to the documentation of the Device Configuration Tool for more information.

6.3 RT118x device workflow
This section describes the RT118x device workflow in detail.

6.3.1 Preparing source image

In this step, select the target memory where the image will be executed. The following options are available for
RT118x devices:

• Image running from an external NOR flash
It is the so-called XIP(eXecution In Place) image. It means that the image is executed directly from the
memory where it is.

• Image running in RAM
This image can be on an SD card/eMMC or in external flash (FlexSPI NOR, FlexSPI NAND) and will be
copied into RAM and executed from there during the boot. The following RAM types are supported:
– internal RAM
– SDRAM
– HyperRAM
The source image preparation is similar to RT116x/7x, see Section 6.2.1. Some RT118x specifics:
– Select an example for core cm33 and then set the target to Cortex-M33.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
75 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

– Step regarding XIP_BOOT_HEADER_ENABLE is not optional. The XIP boot header must be disabled
because the bootable image cannot be used as the input on the build tab for RT118x.

6.3.2 Connecting the board

This section contains information about configuring the following evaluation boards and connecting them to
SEC:

• MIMXRT1180-EVK

• MIMXRT1180A-EVK

• MIMXRT1180-144

1. See Table 5 for instructions on how to set boot mode using DIP switches.
2. Make sure you have J1 set to 3-4 to power the board from USB (from UART on RT1180-144).
3. Connect to the J33 (J53 on RT1180-144) port with the USB cable to your PC.
4. Ensure that SEC is already running with a workspace created for the chosen device. For more information,

see Section 6.1.4.
5. Make sure that the Boot device in the Boot Memory Configuration matches the FlexSPI NOR flash used

on the EVK board.
6. Set the connection to USB (UART on MIMXRT1180-144) and test the board connection.

• Booting from SD card

For booting from an SD card, do the following:

1. Insert a micro SDHC card into the board.
2. Select SD card, SDHC SD-card 8GB USDHC1 in the Boot Memory Configuration.

• Booting from eMMC:

For booting from an eMMC, do the following:

1. eMMC can be installed on board, or it is possible to connect eMMC through SD slot by SD/eMMC adapter.
2. Select eMMC, SDHC eMMC 8 GB USDHC1 in the Boot Memory Configuration.

Boot mode/
Device

Serial bootloader
(ISP mode)

Flex-SPI NOR SD card/ eMMC FlexSPI NAND

RT1180-EVK SW5: x001 SW5: x100 SW5: x011 SW5: x101 (N/A)

RT1180A-EVK SW5: x001 SW5: x100 SW5: x011 SW5: x101 (N/A)

RT1180-144 SW5: x100 SW5: x001 SW5: x110 SW5: x101 (N/A)

Table 5. DIP Switches: Boot mode selection for EVKs

6.3.3 Booting images

This section describes the building and writing of bootable images.

You can use several combinations of used memories:

Memory where the image is
executed

Boot memory: Memory where the image
is written

XMCD needed XIP

External NOR flash1 External NOR flash No Yes

Internal RAM External NOR or NAND flash No No

Table 6. Booting image

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
76 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Memory where the image is
executed

Boot memory: Memory where the image
is written

XMCD needed XIP

Internal RAM SD card or eMMC No No

SDRAM/HyperRAM External NOR or NAND flash Yes No

SDRAM/HyperRAM SD card or eMMC Yes No

Table 6. Booting image...continued

Note:

• Memory, where the image is executed is explained in Section 6.4.1.
• Memory, where the image is written is configured as Boot Memory in SEC.

6.3.3.1 Booting unsigned image

An unsigned image is typically used for development. Start with this boot type before working with secured
images to verify that the executable image works properly.

First, build a bootable image:

1. Make sure you have selected the Unsigned boot type in the Toolbar.
2. Switch to the Build image view.
3. Select the image built in Section 6.3.1 as a Source executable image.
4. For images executed from SDRAM/HyperRAM, configure SEMC SDRAM / FlexSPI HyperRAM using

XMCD. For EVK boards, the following XMCD configuration files can be used: bin/data/targets/MIMXRT118#/
evkmimxrt118#_xmcd_*_simplified.yaml.

5. If needed, open Dual image boot and configure.
6. Click the Build image button to build a bootable image.

When the bootable image has been successfully built:

1. Make sure that the board is in Serial bootloader (ISP) mode.
2. Switch to the Write image view.
3. Make sure that the Use built image checkbox is selected.
4. Click the Write image button.
5. If the write operation was successful, switch boot mode (see Table 5) and reset the board.

6.3.3.2 Booting signed image

This section describes the building and writing of a signed image. Keys generated in the PKI management view
are needed in this step. For more information about generating keys, see Section 5.4.1 If you want to use an
encrypted

image, you can skip this step.

First, build a bootable image:

1. In the Toolbar set Boot type to Signed.
2. In the Build image view, use the image from Section 6.3.1 as a Source executable image.
3. For Authentication key select any key, for example, SRK1.
4. Select the OEM Closed life cycle.
5. Click the Build image button.
6. Check that the bootable image was built successfully.

To write the image, switch to Write image view.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
77 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

1. Make sure that the board is set to Serial bootloader (ISP) mode. See Table 5 for more information.
2. Make sure that the Use built image checkbox is selected.
3. Click the Write image button.
4. In the following window, confirm to write fuses:

• OK - Continue writing the image and burning fuses.
• Cancel - Abort writing the image and burning fuses.

Figure 60. Burn fuses
5. If the write operation was successful, switch boot mode (see Table 5) and reset the board.

6.3.3.3 Booting encrypted (AHAB) image

This section describes the building and writing of an encrypted image. This image is decrypted into RAM during
booting operation, so an XIP image cannot be used. The keys generated in the PKI management view are
needed in this step. For more information about generating keys, see Section 5.4.1.

To build the image, do the following:

1. In the Toolbar set the Boot type to Encrypted (AHAB).
2. As a Source executable image, use the image from Section 6.3.1 as a Source executable image.
3. For Authentication key select any key, for example, SRK1.
4. Select the OEM Closed life cycle.
5. Click the Build image button.
6. Check that the bootable image was built successfully.

To write the image, do the following:

1. Switch to the Write image view.
2. Make sure that the board is set to Serial bootloader (ISP) mode. See Table 3 for more information.
3. Make sure that the Use built image checkbox is selected.
4. Click the Write image. button.
5. In the following window, confirm to write fuses:

• OK - Continue writing the image and burning fuses.
• Cancel - Abort writing the image and burning fuses.

6. If the write operation was successful, switch boot mode (see Table 5) and reset the board.

Note: Part of the encrypted image is a DEK key blob encrypted using a master key from the processor. This
master key is specific for each processor and cannot be used for another processor. DEK key blob is generated
during write and the AHAB image is then updated with this processor-specific key blob.

6.3.3.4 Booting OTFAD encrypted image

This section describes the building and writing of an OTFAD encrypted image. The image itself is built in two
steps. First, the unsigned/signed AHAB image is built and then this AHAB image is encrypted for use with
OTFAD. The source image for the OTFAD feature must be an XIP image. The Keys generated in the PKI
management view are needed in this step. For more information about generating keys, see Section 5.4.1.

To build the image, do the following:
MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
78 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

1. In the Toolbar set the Boot type to Encrypted (OTFAD) signed or Encrypted (OTFAD) unsigned.
2. As a Source executable image, use the image external NOR flash from Section 6.3.1 as a Source

executable image.
3. For Authentication key select any key, for example, SRK1.
4. Click OTFAD encryption to open the OTFAD configuration window. In the window set random keys. The

window allows you to configure the number of OTFAD regions (contexts), KEK source (OTP or DUK), KEK,
Key scramble, user keys for regions, regions ranges, random key generation.

5. Select the OEM Closed life cycle.
6. Open the OTP configuration and review the settings and fix any reported problems.
7. Click the Build image button.
8. Check that the bootable image was built successfully.

To write the image, do the following:

1. Switch to Write image view.
2. Make sure that the board is set to Serial bootloader (ISP) mode. See Table 5 for more information.
3. Ensure that the Use built image checkbox is selected.
4. Click the Write image button.
5. In the following window, confirm to write fuses:

• OK - Continue writing the image and burning fuses.
• Cancel - Abort writing the image and burning fuses.

Figure 61. Burn fuses
6. If the write operation was successful, switch boot mode (see Table 5) and reset the board.

6.3.3.5 Booting IEE encrypted

This section describes the building and writing of an IEE encrypted image. The image itself is built in two steps.
First, the unsigned/signed AHAB image is built and then this AHAB image is encrypted for use with IEE. The
source image for the IEE feature must be an XIP image. The Keys generated in the PKI management view are
needed in this step. For more information about generating keys, see Section 5.4.1.

To build the image, do the following:

1. In the Toolbar set the Boot type to Encrypted (IEE) signed or Encrypted (IEE) unsigned.
2. As a Source executable image, use the image external NOR flash from Section 6.3.1 as a Source

executable image.
3. For Authentication key select any key, for example, SRK1.
4. Click IEE encryption to open the IEE configuration window. In the window set random keys. The window

allows you to configure the number of IEE regions (contexts), AES encryption mode, and user keys for
regions, regions ranges, random key generation.

5. Select the OEM Closed life cycle.
6. Open the OTP configuration and review the settings and fix any reported problems.
7. Click the Build image button.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
79 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

8. Check that the bootable image was built successfully.

To write the image, do the following:

1. Switch to the Write image view.
2. Make sure that the board is set to Serial bootloader (ISP) mode. See Table 5 for more information.
3. Ensure that the Use built image checkbox is selected.
4. Click the Write image button.
5. In the following window, confirm to write fuses:

• OK - Continue writing the image and burning fuses.
• Cancel - Abort writing the image and burning fuses.

Figure 62. Burn fuses
6. If the write operation was successful, switch boot mode (see Table 5) and reset the board.

6.3.3.6 Booting multicore images

This section describes how to build and write an image for multiple cores (Cortex M33 and Cortex M7).

To build multicore images, do the following:

• In this example, the Cortex M7 XIP image runs from external Flash (start address 0x2800B000) and the
Cortex M33 image runs from internal RAM (start address 0xFFE0000):

1. Set the Source executable image (image for Cortex M33) in the Build tab.
2. Open the Additional User/OEM Image dialog via the Additional images button (the application binary

image is automatically filled up).
3. Specify a standalone Cortex M7 executable binary image running from the flash memory and set the

following values:
• Image offset – 0xA000. It is calculated as: Load address (0x2800B000) – FlexSPI NOR base address

(0x28000000) – AHAB image offset in FlexSPI NOR (0x1000)
• Load address - 0x2800B000
• Entry point – 0x2800B000
• Core Id – cortex-m7
• Image type – executable

4. Close the dialog by clicking the OK button.
5. Click the Build image button.

• In this example, the Cortex M7 image runs from internal ITCM RAM (start address 0x0) and the Cortex M33
XIP image runs from external flash (start address 0x2810B000). This use case requires additional fuses, so
the internal RAM is properly accessible.

1. Set the Source executable image (image for Cortex M33) in the Build tab.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
80 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

2. Open the Additional User/OEM Image dialog via the Additional images button (the application binary
image is automatically filled up).

3. Specify a standalone Cortex M7 executable binary image running from ITCM RAM and set the following
values:
• Image offset – 0x10F400 - this can be any value which does not overlap with other image (in this example

the image was placed directly after the Cortex M33 image)
• Load address – 0x303C0000 (secured alias of CM7 ITCM in the CM33 core address space)
• Entry point – 0x0 (the start addresses of the image in the CM7 address space)
• Core Id – cortex-m7
• Image type - executable

4. Close the dialog by clicking the OK button.
5. Open the OTP Configuration dialog by clicking the OTP configuration button in the left-bottom corner.
6. Set POR_PRELOAD_MC7_TCM_ECC and RELEASE_M7_RST_STAT fuses (BOOT_CFG7) to 1 and fix

any reported problems.
7. Close the dialog via the OK button.
8. Click the Build image button.

Note: The write process of the multicore images is the same as for Section 6.3.3.5.

6.3.3.7 Life cycle

The default life cycle, which should be used for development, is OEM Open. Before you deploy the application,
set OEM Closed or OEM Locked life cycle (see documentation for the target processor for detailed
description).

Note: Change of the life cycle is irreversible.

Once the processor is in “OEM Closed” or "OEM Locked" mode:

• The tool processor does not allow burn fuses via blhost. The application can still be updated.
• The processor can only execute signed images

6.3.3.8 Firmware version

The firmware version value is included in the AHAB container header, field Fuse version. This version value is
fused indirectly through the ELE commit API when the AHAB container is authenticated. This commit API must
be called from the application itself.

The AHAB image with a lower fuse version than the version fused cannot be loaded during booting.

6.4 LPC55(S)0x/1x/2x/6x device workflow
This chapter describes workflow for LPC55(S)0x/1x/2x/6x processors.

6.4.1 Preparing source image

In this step, you must select the target memory where the image will be executed. The following option is
available for LPC55Sxx devices:

• Image running from an internal flash
It is the only supported boot memory for the LPC55Sxx/LPC55xx device family. The image is executed directly
from internal flash memory. (XIP)

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
81 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

6.4.1.1 Image running from internal flash

• MCUXpresso IDE

1. Build the project.
2. Open the debug folder.
3. Right-click the named <your.project>.axf file.
4. Select Binary Utilities > Create binary.

• IAR

1. In Project > Options > Output Converter, check Generate additional output and select Raw binary
output format.

Figure 63. IAR options
2. Build the project.

You will find the output image built as boards\lpc55s##\demo_apps\led_blinky\iar\led_blinky\led_blinky.bin.

• Keil MDK 5

1. In Project > Options > User > After Build/Rebuild, check the Run #1 option.
2. Enter the following in the User Command path (where myprog is the project's Name of Executable): C:\Keil

\ARM\ARMCC\bin\fromelf.exe --bin --output=myprog.bin myprog.axf.
3. Build the image.

You will find the output image built as boards\lpc55s##\demo_apps\led_blinky\mdk\led_blinky\led_blinky.bin.

6.4.2 Connecting the board

This section contains information about configuring the following LPC5Sxx evaluation boards and connecting
them to SEC:

• LPCexpresso55S69
• LPCexpresso55S66

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
82 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

• LPCexpresso55S28
• LPCexpresso55S26
• LPCexpresso55S16
• LPCexpresso55S14
• LPCexpresso55S06
• LPCexpresso55S04

It is assumed SEC tool is already running with a workspace created for an LPC device. For more information,
see Section 6.1.4.

1. To communicate via UART, connect USB cable to P6 connector, for USB communication use P9 connector.
2. Enable the ISP boot mode by holding the ISP button and reset.
3. Ensure you have selected the Unsigned boot type in the Toolbar.
4. In the Connection dialog, set the connection to USB or UART according to the selected port and test the

connection to the processor.

6.4.3 Booting images

This section describes the building and writing of images.

6.4.3.1 Security levels

Following security levels are supported in SEC:

Unsigned boot types Default processor configuration that does not provide any security. It
is recommended to start with the unsigned boot type to ensure the
bootable image works on the processor. Unsigned boot types are
intended for development only.

Signed or encrypted boot types -
unsealed Unsealed boot types are also designed to be used during development

to ensure the selected boot type works well. In the KeyStore, CFPA,
and CMPA pages are written into the processor. CMPA page is not
sealed and can be updated or erased.

Signed or encrypted boot types -
sealed A sealed CMPA page is recommended for production. Select the

Deployment life cycle in the Write image view to seal the CMPA page.
Once sealed, it cannot be changed or erased.

6.4.3.2 Booting Plain/Plain with CRC image

This section describes the building and writing of plain/plain with CRC image.

1. In the Toolbar, set Boot Type to Plain or Plain with CRC.
2. As a Source executable image, use the image from Section 6.4.1 as a Source executable image.
3. In the case of a binary image, set the start address to 0x0.
4. Click the Build image button.
5. Check that the bootable image was built successfully.

Once the image has been successfully built, do the following:

1. Make sure that the board is in ISP mode.
2. Click the Write image view.
3. Make sure that the Use built image checkbox is selected.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
83 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

4. Click the Write image button.

If the write operation was successful, reset the board.

6.4.3.3 Booting signed or PRINCE encrypted image

This section describes the building and writing of an authenticated or PRINCE encrypted image. Keys
generated in the PKI management view are needed in this step. For more information about generating keys,
see Section 5.4.1.

Note: The keys are also used for Encrypted (PRINCE) Plain and with CRC boot type because the bootable
image is updated using SB capsule, which must be signed.

1. In the Toolbar, set Boot type to Signed, Encrypted (PRINCE) Plain, Encrypted (PRINCE) with CRC, or
Encrypted (PRINCE) and signed.

2. In the Build image view, use the image from Section 6.4.1 as a source executable image.
3. For Authentication key, select any key chain, for example, ROT1: IMG1_1_1.
4. Open the PRINCE configuration and check the configuration. Set the size of the PRINCE region based on

the size of the bootable image.
5. Click the Build image button.
6. Check that the bootable image was built successfully.

To write the image, do the following:

1. Click the Write image view.
2. Make sure that the board is connected and the ISP mode is enabled (See Section 6.4.2.)
3. Make sure that the Use built image checkbox is selected.
4. Click the Write image button.

If the write operation was successful, reset the board.

Once the image can be successfully executed in the processor, select the Deployment life cycle to permanently
seal the device security with sha256 signature of the CMPA page. If the option remains unselected the security
can be reconfigured. After you select the Deployment life cycle, click the Build image button in the Build
image view. Then click the Write image button again and confirm the following message box:

Figure 64. Confirm write

If the write operation was successful, reset the board.

6.4.3.4 PUF KeyStore

SEC initializes KeyStore on LPC55Sxx devices only once in the device life cycle. After that, the changes in the
SBKEK key are not supported.

KeyStore enrollment status for the device is reported in the Connection dialog, using the Test button.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
84 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Figure 65. KeyStore connection

It is possible to update the keys in the KeyStore, so it should not be needed to re-initialize KeyStore. In case of
unexpected troubles, you can try to erase KeyStore, however, it is not recommended. With the KeyStore, it is
recommended to also clear the CFPA page, as PRINCE IV fields in CFPA depend on the KeyStore. The device
does not boot if you enroll the KeyStore and try to use it with previous IV fields.

6.4.3.4.1 How to erase KeyStore (example for LPC55S69)

bin/tools/blhost/win/blhost -u 0x1FC9,0x0021 -j -- set-property 29 1

bin/tools/blhost/win/blhost -u 0x1FC9,0x0021 -j -- write-memory 0x9E600 zero_1536.bin

zero_1536.bin is a file that contains zeros, and the file size is 3*512 bytes.

6.4.3.4.2 How to update CFPA page (example for LPC55S69)

1. Increment version in cfpa.json: it is recommended to add at least 0x10 from the last known version as the
version is also incremented during PRINCE IV updates.
Default version value since SEC 3.0:
"VERSION": "0x0000_0002",

Default version value in SEC 2.x:
"VERSION": "0x0200_0000",

2. Run the following commands to update CFPA page into processor:
bin/tools/spsdk/pfr generate -c cfpa.json -o cfpa.bin
bin/tools/spsdk/blhost -u 0x1FC9,0x0021 -j -- write-memory 0x0009DE00 cfpa.bin

6.5 LPC55(S)3x device workflow
This chapter describes workflow for LPC55(S)3x processors.

6.5.1 Preparing source image

In this step, select the target memory where the image is executed. The following options are available for
LPC55(S)3x devices:

• Image running from internal FLASH– XIP (eXecution In Place) image, which means that the image is
executed directly from the memory where it is located.
It is the default option for almost all SDK examples. There is no need to modify the default configuration, build
the example as it is.

• Image running from external FLASH– XIP (eXecution In Place) image, which means that the image is
executed directly from the memory where it is located.
The image must start at address 0x8001000. The other locations are not supported now. There is no need to
modify the default configuration.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
85 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

For custom external FLASH, the configuration of external FLASH for booting can be adjusted in CMPA.

6.5.2 Connecting the board

This section contains information about configuring the evaluation board LPC55S36-EVK and connecting it to
SEC.

Board In-System Programming
(ISP) Boot

Boot from internal FLASH Boot from external FLASH

LPC55S36-EVK J43: 1-2 open
3-4 closed

J43: 1-2 closed
3-4 closed

J43: 1-2 closed
3-4 open

Table 7. Boot mode selection for EVK

1. Select ISP boot mode, see Table 7.
2. Connect the J3 port to your PC with a USB cable.
3. Ensure SEC runs with a workspace created for the chosen device. For more information, see Section 6.1.4.
4. Make sure that the boot memory in the toolbar matches NOR FLASH used on EVK board (for example, flex-

spi-nor/ISxxxx) or internal flash.
5. Set the connection to USB and test the board connection.

6.5.3 Booting images

This section describes building and writing of bootable images. For LPC55S3x, SEC tool supports XIP images
only.

6.5.3.1 Booting plain image or plain with CRC image

Plain image is typically used for development. Start with this boot type before working with secured images to
verify that the executable image works properly.

First, build a bootable image:

1. Make sure you have selected the Plain or Plain with CRC boot type in the toolbar.
2. Switch to the Build image view.
3. Select image built in Section 6.5.1 as a Source executable image.
4. If there is a binary image, set the start address to 0x0 for internal flash, or 0x8001000 for external flash.
5. If needed, open Dual image boot and configure.
6. Click the Build image button to build a bootable image. The result is a binary bootable image.

When the bootable image is built, upload it to the processor:

1. Make sure that the processor is in ISP mode.
2. Switch to the Write image view.
3. Make sure that the Use built image check-box is selected.
4. Click the Write image button.

If the write operation is successful, switch boot mode (see Table 7) and reset the board.

6.5.3.2 Booting signed image

This section describes building and writing a signed image.

Build a bootable image:

1. Select Signed boot type in the toolbar.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
86 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

2. Switch to the Build image view.
3. Select image built in Section 6.5.1 as a Source executable image.
4. For Authentication key select any key, for example ROT1: IMG1_1
5. Use random value for “CUST_MK_SK” and “OEM seed” symmetric keys.
6. If needed, open Dual image boot and configure.
7. Open the PFR configuration and on the CMPA page check, that the bit-field SEC_BOOT_EN in the

SECURE_BOOT_CFG field is configured. It is necessary to select any type of image check.
8. Make sure the board is connected and the processor is in ISP mode. During building processes,

provisioning SB file for installation of CUST_MK_SK into processor is prepared.
Note: The processor is reset after SB file is built.

9. Keep Develop in life cycle
10. Click the Build image button to build a bootable image. The result is a binary bootable image and SB3

capsule for installation of the image into the processor.

When the bootable image has been successfully built, you can upload to processor:

1. Make sure the processor is in ISP mode.
2. Switch to the Write image view.
3. Make sure that the Use built image check-box is selected.
4. Click the Write image button.

6.5.3.3 Booting encrypted image

Encrypted images with CRC or signed images are supported. The process of creation an encrypted image is
similar to a signed image. In addition, configure encrypted regions in the Build image view:

• Use the PRINCE Regions button to configure encrypted regions for internal FLASH
• Use the IPED Regions button to configure encrypted regions for external FLASH

In both cases, the whole image is encrypted by default. For clock limitations when using encrypted images,
see documentation for the target processor. With the dual boot, set one region for image0 and one for image1.
Setting a region only for image0 does not encrypt image1.

Image encryption is performed when the image is written to the target memory. The encrypted region is
configured in the SB file. The decrypted regions are configured in CMPA page, so make sure these two are
aligned.

6.5.3.4 Test life cycle

To test processor behavior in an advanced life cycle, it is possible to temporarily change the life cycle to some
higher level by setting control register PMC->LIFECYCLESTATE to the required level. This life-cycle state is
valid until HW is reset. Supported probes are Jlink, pyOCD, and PEmicro.

Required steps:

1. Prepare the image and generate keys.
2. Set access control in SOCU registers.
3. Build the image
4. Execute write operation.
5. Run the application.
6. Connect debug probe.
7. On the write tab click the Test lifecycle button and in the displayed dialog set the required life cycle state.
8. Click Apply to move processor into the selected life cycle. Now it is possible to test the processor behavior.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
87 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Figure 66. Lifecycle test

6.5.3.5 Life cycle

The default life cycle, which should be used for development, is Develop. Before you deploy the application, set
“In Field” or “In Field Locked” life cycle (see documentation for the target processor for detailed description).

Note: Change of the life cycle is irreversible.

When changing to In Field life cycle, CMPA and CFPA pages are installed in the dev_hsm_provi.sb file. It is
supposed that in this mode, the pages are installed into an empty processor, so there are not any failures (the
page update may fail, so in development mode, these pages are updated in write script, where the progress and
error report are much better). Once the processor is in In Field state, the SEC tool supports only update of the
application image; updates of CMPA and CFPA are not supported.

Figure 67. Lifecycle test

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
88 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

6.6 RTxxx device workflow
This section describes RTxxx device workflow in detail.

6.6.1 Preparing source image

In this step, you must select the target memory where the image will be executed.

Supported boot memories are NOR flash, SD card, and eMMC.

Following boot types are available for RTxxx processors:

• Image running in external flash: The XIP image (eXecuted In Place)

• Image running in internal RAM: The image is copied from FLASH, SD card, or eMMC to RAM before the
execution

It is recommended to use the gpio_led_output example for verification, the image is started properly. By
default, this example triggers LED blinking only if the user button is clicked, but you can easily modify it to blink
all the time.

6.6.1.1 Image running in external flash

The gpio_led_output example is linked into external flash by default. Disable the XIP Boot header, as it will be
created by SEC.

• MCUXpresso IDE
1. Go to Project > Properties > C/C++ Build > Settings > MCU C Compiler > Preprocessor > Defined

symbols and set BOOT_HEADER_ENABLE to 0.
2. Build the image.

You will find the resulting source image named as Debug\evkmimxrt685_gpio_led_output.axf. It can be
used as input for the bootable image in SEC.

• Keil MDK
1. In the Toolbar, select gpio_output_flash_debug target.
2. In Project > Options > "*C/C++*" disable define symbol BOOT_HEADER_ENABLE=0 (set to 0).
3. In Project > Options > Output select Create HEX file checkbox.
4. Double-check that the application is linked to 0x8001000. If not, the following fix must be applied to the

linker as a workaround for the problem:

Figure 68. Keil MDK workaround
5. Build the image.

You will find the output image as boards\evkmimxrt685\driver_examples\gpio\led_output\mdk\flash_debug
\gpio_led_output.out

• IAR Embedded Workbench
1. In Project > Edit Configurations …, select flash_debug.
2. In Project Options > C/C++ Compiler > Preprocessor > Defined Symbols, add or change the existing

BOOT_HEADER_ENABLE define to 0.
3. Build the image.

You will find the output image as boards\evkmimxrt###\driver_examples\gpio\led_output\iar\flash_debug
\gpio_led_output.out.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
89 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

6.6.1.2 Image running in internal RAM

• MCUXpresso IDE
1. Go to Project > Properties > C/C++ Build > Settings > MCU C Compiler > Preprocessor > Defined

symbols and set BOOT_HEADER_ENABLE to 0.
2. Select Project > Properties - C/C++ Build > Settings > Tool Settings > MCU Linker > Managed

Linker Script and check Link application to RAM.
3. Build the image.

You will find the built image as Debug\evkmimxrt685_gpio_led_output.axf. You can later use it as Source
executable image by SEC.

• Keil MDK
Because example projects for MDK are not built into RAM, you must manually modify the linker file. Generic
description of such changes is not documented yet.

• IAR Embedded Workbench
1. In Project > Edit Configurations …, select debug.
2. In Project Options > C/C++ Compiler > Preprocessor > Defined Symbols, add or change the existing

BOOT_HEADER_ENABLE define to 0.
3. Build the image.

You will find the output image built as boards\evkmimxrt###\driver_examples\gpio\led_output\iar\debug
\gpio_led_output.out.

6.6.2 Connecting the board

This section contains information about configuring the following evaluation boards and connecting them to
SEC:

• MIMXRT595-EVK
• MIMXRT685-EVK

Boot Mode/Device ISP Mode FlexSPI Boot SD card eMMC

MIMXRT595-EVK SW7[1:3]: 100 (UART,
SPI, I2C)
SW7[1:3]: 101 (USB)

SW7[1:3]: 001 RT595 SW7[1:3] 011 RT595 SW7[1:3] 110

MIMXRT685-EVK SW5[1:3]: 100 SW5[1:3]: 101 RT685 SW5[1:3] 011 RT685 SW5[1:3] 110

Table 8. RTxxx EVK boot configuration

1. Switch the board to ISP Mode and reset. For more information, see the above table.
2. Connect to the J7 port with the USB cable to your PC.
3. Ensure you have started SEC with a new workspace. For more information, see Section 6.1.4.
4. Set the connection to USB and test the board connection.
5. Booting from SD card:
6. For booting from an SD card, do the following:

1. Insert SDHC card into the board in MCUXpresso Secure Provisioning Tool
2. Select the Boot memory: sd_card/SDHC SD card 8 GB in the Toolbar.
3. SDHC power cycle must be set to ENABLED for evk boards

Booting from eMMC:

For booting from an eMMC, do the following:

1. eMMC can be installed on board, or it is possible to connect eMMC through SD slot by SD/eMMC adapter.
2. Select Boot memory: eMMC/SDHC eMMC 8 GB in the Toolbar.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
90 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

6.6.3 Booting images

This chapter describes the building and writing of plain and signed bootable images.

6.6.3.1 Booting a plain/plain with CRC image

Plain image is typically used for development. It is recommended to start with this boot type before working with
secured images to verify that the executable image works properly.

To build a bootable image, follow these steps:

1. In the Toolbar, select Plain or Plain with CRC in Boot type.

2. Switch to the Build image view.

3. Select image build in Section 6.6.1 as a Source executable image. If needed, open the Dual image
boot and configure. If configured, open OTP configuration and review all reported problems. For fuse
BOOT_CFG[3] being locked after write, it is necessary to specify the whole value as it is programmed only
once.

4. Click the Build image button to build a bootable image.

When the bootable image has been successfully built:

1. Connect the board, see Section 6.6.2.

2. Switch to the Write image view.

3. Make sure that the Use built image checkbox is selected.

4. Reset the board. Note that if the write script is executed twice without resetting the board, the configuration
of external memory may fail unless the fuse with the QSPI reset pin is not burnt.

5. Click the Write image button.

If the write operation was successful, switch boot mode to FlexSPI boot (see Table 8) and reset the board.

6.6.3.2 Booting signed image using shadow registers

This section describes the building and writing of an authenticated image.

1. In the Toolbar set Boot type to Signed.
2. In the Build image view, use the image from Preparing source image as a Source executable image.
3. Ensure you have keys generated in the PKI management view. For more information, see Section 5.4.
4. For Authentication key, select any key, for example, ROT1: IMG1_1.
5. As a Key source select OTP or KeyStore. KeyStore represents a higher security level, as PUF is used.

See Section 6.6.3.5 for the limitations.
6. Generate a random User key and SBKEK.
7. If needed, open Dual image boot and configure.
8. Select the Development life cycle.
9. Open OTP configuration and review all reported problems. For fuses BOOT_CFG[0] and BOOT_CFG[3]

being locked after write, it is necessary to specify the whole value, as it will be programmed only once.
10. Click the Build image button and check that the bootable image was built successfully.

To write the image, do the following:

1. To write the image, switch to Write image view.
2. Make sure that the board is set to Serial bootloader (ISP) mode. For more information, see Section 6.6.2.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
91 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

3. Make sure that the Use built image checkbox is selected.
4. Reset the board. It is necessary because:

• Shadow registers cannot be updated or written twice, they can be set to a “clean” processor only.
• If the fuse for the QSPI reset pin is not burnt, it is necessary to reset the flash manually before each

configuration.
5. Click the Write image button.

During the write operation, the following steps are performed:

1. Fuses are checked to ensure that the board is in an unsecured mode.
2. A simple application is written into RAM. The application initializes shadow registers.
3. Shadow registers data are written into RAM. The application is started.
4. The application resets the processor.
5. The write_image script is started to configure external flash and write the application into flash.

6.6.3.3 Booting OTFAD encrypted image using shadow registers

This section describes the building and writing of an encrypted image (OTFAD encryption).

1. In the Toolbar set Boot Type to Encrypted (OTFAD) with CRC or Encrypted (OTFAD) signed.
2. In the Build image view, use the image from Section 6.2.1 as a Source executable image.
3. Ensure you have keys generated in the PKI management view. For more information, see PKI

Management.
4. For Authentication key, select any key, for example, ROT1: IMG1_1.
5. As a Key source select OTP or KeyStore. KeyStore represents a higher security level, as PUF is used.

See Full Security for the limitations.
6. Generate a random User key and SBKEK.
7. Open OTFAD encryption and set random keys.
8. If needed, open Dual image boot and configure.
9. Select Development life cycle.

10. Open OTP configuration and review all reported problems. For fuses BOOT_CFG[0] and BOOT_CFG[3]
being locked after write, it is necessary to specify the whole value, as it will be programmed only once.

11. Click the Build image button and check that the bootable image was built successfully.

To write the image, do the following:

1. To write the image, switch to Write image view.
2. Make sure that the board is set to Serial bootloader (ISP) mode. For more information, see Section 6.6.2.
3. Make sure that the Use built image checkbox is selected.
4. Reset the board. It is necessary because:

• Shadow registers cannot be updated or written twice, they can be set to a “clean” processor only.
• If the fuse for the QSPI reset pin is not burnt, it is necessary to reset the flash manually before each

configuration.
5. Click the Write image button.

During the write operation, the following steps are performed:

1. Fuses are checked to ensure that the board is in an unsecured mode.
2. A simple application is written into RAM. The application initializes shadow registers.
3. Shadow registers data are written into RAM. The application is started.
4. The application resets the processor.
5. The SB file is applied to the processor, and during this process, the following actions will be done:

• Configure external flash

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
92 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

• Erase flash (KeyStore is preserved if it is used)
• Create an FCB block at the beginning of the flash
• Write an encrypted application
• Write OTFAD key blobs

Note: Repetitive Write to QSPI flash might fail if the board is not Reset.

6.6.3.4 Booting signed/encrypted image – burn fuses

Burning fuses is an irreversible operation, which should be performed only after the bootable image was
tested with shadow registers. It is also recommended to safely back up all keys prior to burning fuses. The
booting process is identical to the process described previously with only one difference in write operation - the
Deployment life cycle must be selected. During the write operation, the shadow registers will not be initialized,
and write image script will burn the fuses instead. The GUI will display confirmation with a list of fuses groups to
be burnt.

Note: Detailed info about the modification of fuses can be reviewed in Section 5.2.4.

6.6.3.5 Securing the processor

To enable full security on RTxxx processors, DCFG_CC_SOCU and DCFG_CC_SOCU_AP fuses must be
burnt.

SEC does not set up these fuses for burning by default (even if the Deployment life cycle is selected), but you
can configure it in OTP/PFR configuration.

Note that once the DCFG_CC_SOCU fuses are set, it is no longer possible to modify security configuration
parameters, and no changes in key store are allowed using blhost. If KeyStore is used, the image can be
updated in SEC only if:

• ISP mode is still enabled, and
• QSPI_ISP_AUTO_PROBE_EN bin in BOOT_CFG[1] fuse is enabled.

This feature is not supported on RT6xx processors, and the image can be updated only using a custom
bootloader.

If the keys are stored in OTP fuses, no limitation applies.

Note that OTFAD encryption on RT600 is not supported with KeyStore, because there is no support to back up
and restore KeyStore during erasing the flash in the SB file.

To test the DCFG_CC_SOCU configuration in the shadow registers, the following steps must be followed:

• prepare and test the application image without DCFG_CC_SOCU (for example, all DCFG_CC_SOCU must
be zero)

• once the image is running and the FCB configuration is valid and available in FLASH, configure
DCFG_CC_SOCU. The processor will now be set to full security, so some blhost operations are no longer
available. The processor can be updated via SB file only.

6.6.3.6 Device HSM provisioning

This section describes the provisioning of the processor using key blob encrypted using device HSM, which
allows to transfer keys (fuses values) securely and application bootable image into the factory. Device HSM is
supported for all secure boot types: Signed and OTFAD encrypted in the deployment life cycle. Device HSM
can be selected from the toolbar in the trust provisioning type selection dialog.

In device HSM mode, several fuses are configured by trust provisioning firmware. These fuses must be
configured, so the tool displays an error if the required value is not specified. The encryption of the fuses into

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
93 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

the key blob is done using the EVK evaluation board. During the build operation, the fuses values are written
into RAM, and then trust provisioning firmware creates a key blob.

To do the build, follow the steps below:

1. On the toolbar, ensure that the Signed or Encrypted boot type is selected
2. On the toolbar, ensure that the Deployment life cycle is selected
3. On the toolbar, select Device HSM provisioning type
4. In OTP configuration, ensure that all fuses for device HSM are specified; additional fuses can be burnt in the

application SB file.
5. Connect EVK board using UART or USB connector
6. Open the Connection dialog and test the connection;
7. Run the build. During the build, the bootable image and SB file are created and then the fuses values are

written to processor RAM and then encrypted using provisioning firmware. The fuses of the processor are
not affected in this step

8. After the build script, the encrypted key blob is read.

Note: Provisioning firmware is distributed in a restricted data package, see Preferences for details.

Write

Write operation is the same as secure boot type using write script. The write script uses the same provisioning
firmware to decrypt the key blob and burn selected fuses and then it resets the processor. It uses the SB file to
install the application image. In case the booting device is selected by the fuse, ensure, the booting device is
empty, so the processor falls into ISP mode after the reset and the application image can be uploaded.

Manufacturing package

For the manufacturing operation, it is recommended to create a manufacturing package. For more information,
see Section 5.3.1

6.7 KW45xx/K32W1xx device workflow
This chapter describes workflow for KW45xx/K32W1xx processors.

6.7.1 Preparing source image

In this step, select the target memory where the image is executed. The following options are available for
KW45xx/K32W1xx devices:

• Image running from an internal flash

It is the only supported boot memory for the KW45xx/K32W1xx device family. The image is executed directly
from internal flash memory.

There is no need to modify the default configuration, build the MCUXpresso SDK example as it is.

6.7.2 Connecting the board

This section contains information about configuring the following evaluation boards and connecting them to
SEC:

• KW45B41Z-EVK
• K32W148-EVK

It is assumed SEC tool is already running with a workspace created for an KW45xx/K32W1xx device. For more
information, see Section 6.1.4

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
94 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

1. Connect the J14 port to your PC with a USB cable.
2. Set the JP25 jumper to enable the SW4 button.
3. Enable the ISP boot mode by holding the SW4 button and reset.
4. In the Connection dialog test the connection to the processor.

6.7.3 Booting images

This section describes building and writing of bootable images. For KW45xx/K32W1xx, SEC tool supports XIP
images only.

6.7.3.1 Booting plain image or plain with CRC image

A plain image is typically used for development. Start with this boot type before working with secured images to
verify that the executable image works properly. Dual image boot is supported only for secure boot types.

First, build a bootable image:

1. Make sure you have selected the Plain or Plain with CRC boot type in the toolbar.

2. Switch to the Build image view.

3. Select an image built in Section 6.10.1 as a Source executable image.

4. If there is a binary image, set the start address to 0x0.

5. Click the Build image button to build a bootable image. The result is a binary bootable image.

When the bootable image is built, upload it to the processor:

1. Make sure that the processor is in ISP mode.

2. Switch to the Write image view.

3. Make sure that the Use built image check-box is selected.

4. Click the Write image button.

If the write operation was successful, reset the board.

6.7.3.2 Booting signed image

This section describes building and writing a signed image.

Build a bootable image:

1. Select Signed boot type in the toolbar.
2. Switch to the Build image view.
3. Select an image built in Section 6.10.1 as a Source executable image.
4. Ensure you have the keys on PKI management. Evaluation boards KW45B41Z-EVK and K32W148-EVK

are produced with preprogrammed ROKTH and SB3KDK keys in the fuses CUST_PROD_OEMFW_AUTH_PUK
and CUST_PROD_OEMFW_ENC_SK. These keys are also distributed in the SEC tool and can be imported
from the tool folder “bin\data\targets\<processor>\evk_keys” (see Section 5.4.4). These keys are intended
for evaluation purposes only and must not be used for production.

5. For Authentication key select any key, for example ROT1: IMG1_1
6. Use an imported value or create your own (random) one for SB3KDK symmetric key.
7. If needed, open Dual image boot and configure. Image must be linked to the Flash Logical Window.
8. Keep Development in the life cycle.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
95 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

9. Click the Build image button to build a bootable image. The result is an SB3 capsule for installation into the
processor.

When the bootable image and SB3 capsule have been successfully built, you can upload to the processor:

1. Make sure that the processor is in ISP mode.
2. Switch to the Write image view.
3. Make sure that the Use built image check-box is selected.
4. Keep OEM Open in the life cycle.
5. Click the Write image button.

6.7.3.3 Booting PRINCE encrypted image

Encrypted plain images, images with CRC or signed images are supported. The process of creating an
encrypted image is similar to a signed image. In addition, configure encrypted regions in the Build image view.
Use the PRINCE regions button to configure encrypted regions. In combination with the dual boot, set one
region for image0 and one for image1. Setting a region only for image0 does not encrypt image1.

Image encryption is performed when the image is written to the target memory.

The regions configuration is included into the ROMCFG page.

Note: Open OTP/IFR configuration to review the PRINCE settings in the ROMCFG block(s) as the block must
be completely specified and can be written only once. It is an irreversible operation.

6.7.3.4 Life cycle

The default life cycle, which should be used for development, is OEM Open. Before you deploy the application,
set OEM Closed or OEM Locked life cycle (see documentation for the target processor for detailed
description).

Note: Change of the life cycle is irreversible.

Once the processor is in “OEM Closed” or "OEM Locked" mode, the tool does not allow initializing ROMCFG
page. The application still can be updated via SB file.

6.8 RW61x device workflow
This chapter describes workflow for RW61x processors.

6.8.1 Preparing source image

The only available boot memory for the RT61x processor is external flash.

To create the source image for the build in SEC tool, disable the boot header, set define symbol
BOOT_HEADER_ENABLE to 0 (in MCUXpresso IDE, go to Project > Properties > C/C++ Build > Settings >
MCU C Compiler > Preprocessor > Defined symbols and set BOOT_HEADER_ENABLE to 0).

The image shall be at address 0x8001000 (default in MCUXpresso SDK examples).

6.8.2 Connecting the board

This section contains information about configuring the evaluation boards RD-RW612-BGA or RD-RW61x-QFP
and connecting it to SEC.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
96 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Board In-System Programming
(ISP) Boot

Boot from external FLASH

RD-RW612-BGA U38 switch: 0001 U38 switch: 0000

RD-RW612-QFP U38 switch: 0001 U38 switch: 0000

Table 9. TBD

1. Select ISP boot mode, see Table 9

2. Connect the J7 port to your PC with a USB cable.

3. Ensure SEC runs with a workspace created for the chosen device. For more information, see Section 6.1.4.

4. Go to main menu – Target – Connection and select UART and test the connection.

6.8.3 Shadow registers for fuses via debug probe

The SEC tool uses In-Field, shadow registers as the default life cycle. It means that the In-Field life cycle
will be configured using shadow registers. For development, start with shadow registers to avoid irreversible
changes in fuses, but this should not be used for production. The shadow registers configuration is done via a
debug probe, so the probe must be selected first:

1. Go to the main menu – Target – Debug Probe to open a dialog for debug probe selection.
2. Select debug probe from the drop-down menu
3. Switch the board switch to boot mode from an external flash and reset the processor; click “Test connection”

to check the connection with the debug probe

The processor does not allow to use shadow registers in the “Develop” life cycle, so by default, the shadow
registers for the life cycle will configure the “In-Field” state.

Also, to make image booting using shadow registers, it is necessary to configure the boot source in
BOOT_CFG0 shadow register. As the fuse is locked after the first write, the tool will ask you to specify all the
other bits (even for shadow registers). Go to OTP configuration to specify them.

In the shadow registers life cycle, the fuses shadow registers are configured immediately after the write image is
successfully finished. The SEC tool launches the write_shadows script that will set the shadow registers and
then resets the processor. After the reset, the processor boots the image.

For the encrypted mode, the application is written via the SB file, so RKTH and CUST_MK_SK fuses must be
programmed (even if the shadow registers life cycle is selected).

6.8.4 Booting images

This section describes building and writing bootable images into the external flash and booting.

6.8.4.1 Booting plain image or plain with CRC image

A plain image is typically used for development. Start with this boot type before working with secured images to
verify that the executable image works properly.

First, build a bootable image:

1. Make sure you have selected the Plain or Plain with CRC boot type in the toolbar.

2. Switch to the Build image view.

3. Select an image built in Section 6.4.1 as a Source executable image.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
97 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

4. If there is a binary image, set the start address to 0x8001000.

5. Configure BOOT_CFG0 fuse (see the previous paragraph).

6. If needed, open Dual image boot and configure.

5. Click the Build image button to build a bootable image. The result is a binary bootable image.

When the bootable image is built, upload it to the processor:

1. Make sure that the processor is in ISP mode.

2. Switch to the Write image view.

3. Make sure that the Use built image check-box is selected.

4. Click the Write image button.

5. If the write operation was successful, reset the board.

• the image boots automatically if shadow registers are selected
• otherwise switch boot mode (see Table 9) and reset the board to boot the image.

6.8.4.2 Booting signed image

This section describes building and writing a signed image.

Build a bootable image:

1. Select Signed boot type in the toolbar.
2. Switch to the Build image view.
3. Select an image built in Section 6.4.1 as a Source executable image.
4. For Authentication key select any key, for example ROT1: IMG1_1
5. Use random value for “CUST_MK_SK” and “OEM seed” symmetric keys.
6. Ensure there is no error in OTP configuration. For ECC p384 key length you will need to configure

BOOT_CFG3 fuse.
7. Make sure the board is connected and the processor is in ISP mode. During building processes,

provisioning SB3 file for installation of CUST_MK_SK into processor is prepared.
Note: The processor is reset after SB file is built.

8. Keep In-Field, shadow regs life cycle to avoid irreversible changes in the processor
9. Click the Build image button to build a bootable image. The result is a binary bootable image and SB3

capsule for installation of the image into the processor.

When the bootable image and SB3 capsule have been successfully built, you can upload to the processor:

1. Make sure that the processor is in ISP mode.
2. Switch to the Write image view.
3. Make sure that the Use built image check-box is selected.
4. Click the Write image button.

In the shadow register life cycle, no fuses are burnt. The signed application is written into the flash and then
shadow registers are applied and the processor is reset to start the application.

Once you advance to life cycle without shadow registers, the fuses will be burnt irreversibly and SB3 capsule
will be used to write the application into the flash.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
98 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

6.8.4.3 Booting encrypted image

Encrypted images with plain, CRC, or signed images are supported. The process of creation an encrypted
image is similar to a signed image.

In addition, it is necessary to configure encrypted regions via the IPED Regions button on the Build image
view (by default, the whole application is encrypted). IPED region alignment is based on the page size of the
target FLASH, which is retrieved from FCB flash configuration. See Section 5.1.7 how to convert Flex-SPI NOR
simplified configuration to full FCB configuration.

For clock limitations when using encrypted images, see documentation for the target processor.

In combination with the dual boot, configure encryption for image0 only, and the same settings are applied for
image1.

Image encryption is performed when the image is written to the target memory. The application is written via SB
file, so RKTH and CUST_MK_SK fuses must be burnt, so the processor can decrypt and authenticate SB file
content. Mind these fuses will be burnt even if the shadow registers are selected.

The encrypted region is configured in the SB file. The decrypted regions are configured in fuses, so make sure
these two are aligned.

6.8.4.4 Life cycle

The following table provides an overview of fuses burnt by the write script for different configurations of life cycle
and boot type and contains information on whether the SB3 capsule can be used to update the application
image.

Shadow regs life cycle Develop life cycle In-Field life cycle

Plain or CRC boot type • No fuses burnt
• SB file not used

• Fuses burnt, see OTP
Configuration dialog

• SB file not used

• Same as develop + life
cycle fuse burnt

• SB file not used

Signed boot type • No fuses burnt
• SB file not used, however it

is generated during build

• Fuses burnt, see OTP
Configuration dialog
– RKTH and CUST_MK_

SK burnt
• SB file used

• Same as develop + life
cycle fuse burnt

• SB file used

Encrypted boot type • RKTH and CUST_MK_SK
burnt

• SB file used
• No other fuses burnt

• Fuses burnt, see OTP
Configuration dialog

• IPED, RKTH, and CUST_
MK_SK burnt

• SB file used

• Same as develop + life
cycle fuse burnt

• SB file used

Table 10. TBD

6.8.4.5 Device HSM and CUST_MK_SK

The CUST_MK_SK is a customer key for SB file encryption/decryption and this key can be installed into
processor only using device HSM SB file. The key is stored in the fuses, so the installation is irreversible and
once the fuse is written it is locked for write (the lock is also used to detect, the key is already installed or not).

6.9 MCX Nx4x/A14x/A15x device workflow
This chapter describes workflow for Nx4x/A14x/A15x processors.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
99 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

6.9.1 Preparing source image

• Image running from internal FLASH is the default option for almost all SDK examples. There is no need to
modify the default configuration, build the example as is.

• Image running from external FLASH must start at address 0x80001000, edit this address when creating an
example in MCUXpressoIDE in advance setting.

• Image running from internal RAM when creating this example select link application to RAM.

6.9.2 Connecting the board

This section contains information about configuring the evaluation boards FRDM-MCXN947, MCX-N9XX-EVK,
MCX-N5XX-EVK, or FRDM-MCXA153 and connecting it to SEC.

Board In-System Programming
(ISP) Boot

Boot from external FLASH Boot from internal FLASH

MCX-N9XX-EVK SW3/JP49

FRDM-MCXN947 SW3

MCX-N5XX-EVK SW3/JP49

Boot source defined in CMPA

FRDM-MCXA153 SW2/JP8 N/A By default

Table 11. TBD

1. Select ISP boot mode, see Table

2. Connect the J5 (J15 onFRDM-MCXA153) port to your PC with a USB cable.

3. Ensure SEC runs with a workspace created for the chosen device. For more information, see Section 6.1.4.

4. Go to main menu – Target – Connection and select UART and test the connection.

6.9.3 Booting images

This section describes building and writing of bootable images into the internal flash and booting. Booting from
the external flash is similar, but the image linked to the external flash is used.

6.9.3.1 Booting plain image or plain with CRC image

A plain image is typically used for development. Start with this boot type before working with secured images to
verify that the executable image works properly.

First, build a bootable image:

1. Make sure you have selected the Plain or Plain with CRC boot type in the toolbar.

2. Switch to the Build image view.

3. Select an image built in Section 6.4.1 as a Source executable image.

4. If there is a binary image, set the start address to 0x00000000 (for external flash 0x80001000).

5. Configure BOOT_CFG0 fuse (see the previous paragraph).

6. If needed, open Dual image boot and configure.

5. Click the Build image button to build a bootable image. The result is a binary bootable image.

When the bootable image is built, upload it to the processor:

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
100 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

1. Make sure that the processor is in ISP mode.

2. Switch to the Write image view.

3. Make sure that the Use built image check-box is selected.

4. Click the Write image button.

5. If the write operation is successful, remove the ISP jumper and reset the board to boot the image.

6.9.3.2 Booting signed image

This section describes building and writing a signed image.

Build a bootable image:

1. Select Signed boot type in the toolbar.
2. Switch to the Build image view.
3. Select an image built in Section 6.4.1 as a Source executable image.
4. Generate keys on PKI tab.
5. Back on the Build image view select any key, for example ROT1: IMG1_1.
6. Use random value for “CUST_MK_SK” and “OEM seed” symmetric keys.
7. If needed, open Dual image boot and configure.
8. Make sure the board is connected and the processor is in ISP mode. During building processes,

provisioning SB3 file for installation of CUST_MK_SK into processor is prepared. If no board is connected
build will fail when preparing the provisioning SB3 file. But other build processes were completed.
Note: The processor is reset after the SB file is built.

9. Click the Build image button to build a bootable image. The result is a binary bootable image and SB3
capsule for installation of the image into the processor.

When the bootable image has been successfully built, you can upload to the processor:

1. Make sure that the processor is in ISP mode.
2. Switch to the Write image view.
3. Make sure that the Use built image check-box is selected.
4. Click the Write image button.

6.9.3.3 Booting encrypted image

Encrypted images with CRC or signed images are supported. The process of creation an encrypted image is
similar to a signed image. In addition, configure encrypted regions in the Build image view:

• Use the PRINCE Regions button to configure encrypted regions for internal FLASH
• Use the IPED Regions button to configure encrypted regions for external FLASH

In both cases, the image is encrypted by default. For clock limitations when using encrypted images, see
documentation for the target processor. In combination with the dual boot, set one region for image0 and one for
image1. Setting a region only for image0 does not encrypt image1.

Image encryption is performed when the image is written to the target memory. The encrypted region is
configured in the SB file. The decrypted regions are configured in CMPA page, so make sure these two are
aligned.

6.9.3.4 Life cycle

The default life cycle, which should be used for development, is Develop. Before you deploy the application, set
the “In Field” or “In Field Locked” life cycle (see documentation for the target processor for detailed description).

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
101 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

When switching the lifecycle, it is recommended to burn ROTKH and PRINCE or IPED region settings into
fuses. ROTKH fuses are set by the tool automatically, but PRINCE or IPED setting is up to the user to be set.

Note: Change of the life cycle is irreversible.

When changing to In Field life cycle, CMPA and CFPA pages are installed in the dev_hsm_provi.sb file. It is
supposed that in this mode, the pages are installed into an empty processor, so there are not any failures (the
page update may fail, so in development mode, these pages are updated in write script, where the progress
and error report are better). Once the processor is in In Field state, the SEC tool supports only update of the
application image; updates of CMPA and CFPA are not supported.

6.9.3.5 Test life cycle

MCX Nx4x variants can set the test life cycle on the CFPA page by setting the bit-field CFPA_LC_STATE and
INV_CFPA_LC_STATE in the HEADER register. By writing this CFPA setting, MCU behaves as if the LF was
moved in OTP.

Note: Use only the expected LC values, other values can brick the chip.

To move back from the advanced life cycle, set the bit-field CFPA_LC_STATE back to 0x0 and write it to the
chip. If the LC is moved only in the CFPA, it is possible to rewrite the CFPA page after power-on reset by
executing blhost -u 0x1fc9, 0x014f -- write-memory 0x01000000 cfpa.bin.

Steps to advance LC and return:

1. Open or prepare a workspace that has a secure boot type (signed or encrypted)
2. In OTP/PFR configuration, set CFPA_LC_STATE to 0xF and INV_CFPA_LC_STATE to 0xF0
3. Build and write image
4. Power-cycle the device into ISP
5. In OTP/PFR configuration, read the CFPA page
6. Reset the device by clicking the Reset button or using the blhost reset command
7. Test the secure life-cycle behavior (limited commands, debug rights based on the SOCU register)
8. After testing is done, power-cycle the device into the ISP
9. Open OTP/PFR configuration and set CFPA_LC_STATE to 0x0 and INV_CFPA_LC_STATE to 0xFF

10. Enable advanced mode and write the CFPA page into the device
11. After reset, the device will be back in normal LC

Note: For EVK variants for power cycle follow these steps:
a. Power off the board
b. Add jumper to JP22
c. Change the power supply to USB (J28)
d. Hold the ISP button (or short the jumper for ISP) and connect the board via J28
e. Remove jumper JP22

6.10 Smart Card trust provisioning workflow
Trust provisioning allows OEMs (Original Equipment Manufacturers) to contract manufacturing of the product
by a third-party company including firmware provisioning without access of the third-party company to the OEM
confidential assets (such as application firmware and keys).

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
102 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Figure 69. High-level trust provisioning workflow

High-level workflow description:

1. OEM develops application firmware (sb file capsule). OEM generates keys and configures Smart Card with
the keys and other assets. OEM creates a manufacturing package with the application firmware.

2. OEM sends Smart Card and manufacturing package to the factory.
3. In the factory, the firmware is provisioned into flash, the record is added into the audit log for each device.
4. The factory sends the audit log to OEM.
5. OEM checks the validity of the audit log and the number of devices being manufactured, optionally extracts

certificates, and uploads them to the cloud.

Features:

• Application firmware is encrypted using OEM keys.
• Smart Card is used to secure the OEM keys.
• Smart Card contains the production counter, so OEM can control the number of products.
• Simple manufacturing dialog allows producing of several devices in parallel.
• Audit log in SQL-lite DB format.
• Optionally, there can be generated up to 4 device identity certificates for each product.
• Supported processors can be found in the attached SEC-Tool-Features.xls
• For details, see a demo video (webinar) at nxp.com (https://www.nxp.com/video/enabling-smart-card-trust-

provisioning-on-lpc5500:SMARTCARDTP).

6.10.1 Preparation of OEM-specific inputs

To start trust provisioning, you need:

• Smart Card – Please contact NXP local representatives for Smart Cards. Starting from SEC tool version 7,
Smart Card with applet version 1.2 or above is required.

• Processor that is supported for trust provisioning.
• Application firmware – bootable application built with a secure boot type (authenticated or encrypted). The

application must be built in the Build image view. SBKEK must be specified.
• The secured life cycle is configured in the toolbar.

Note: For development purposes, it is possible to use the development life cycle, but only on the LPC55S36
processor

• Valid PFR Configuration in the Build image view. The CFPA version must be higher than the CFPA version in
the current processor (it is recommended to add at least 10), otherwise the CFPA page cannot be updated.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
103 / 129

https://www.nxp.com/video/enabling-smart-card-trust-provisioning-on-lpc5500:SMARTCARDTP
https://www.nxp.com/video/enabling-smart-card-trust-provisioning-on-lpc5500:SMARTCARDTP

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

• The audit log key and optionally also the certificate signing key. These keys can be provided externally or
created on the PKI management view (See Section 5.4).

• For the LPC55S3x device, an HSM provisioning SB3 file that contains CFPA and CMPA; the format of the file
is different for a Smart Card, so it must be re-built after the card is selected.

• Asset provisioning firmware.
The firmware is distributed within the SEC tool; however, for some processors, part of the firmware is
delivered as restricted data. For details, see Section 5.1.3.

• Optionally, you can also configure the device identity for IoT (Internet of Thing) devices. This feature is
described in Section 6.10.7.

6.10.2 Configuration of Smart Card at OEM

After you have all inputs, enable the Smart Card trust provisioning type on the toolbar. Click the Detect button to
find the Smart Card. Click the Test connection button to ensure that the Smart Card is recognized by the tool
and communication can be established.

After you enable the Smart Card, the Smart Card management view is enabled. You can generate trust
provisioning keys (certificate signing key and production audit log key) in the PKI management view. Review
and configure all items at the Smart Card configuration (For more information, see Section 5.5). Then hit the
Prepare Smart Card button.

Note: You cannot generate the certificate signing key and audit log keys until you enable the Smart Card.

For development purposes, you do not need to seal the Smart Card immediately. The unsealed Smart Card can
be reconfigured. It is recommended to test the Smart Card before it is sealed.

SBKEK and PFR Configuration are also stored on the Smart Card, reconfigure the Smart Card if there are
changes in any of them.

6.10.3 Testing the OEM configuration

This describes how to verify trust provisioning on the OEM side. This step is optional; however, it is a good
practice to ensure trust provisioning works with your configuration.

• Use a new empty processor.
– If you have previously used the processor, ensure that no fuses are burnt and the processor is still in the

development life cycle. Use the Clear CMPA button in the PFR configuration dialog to clear the CMPA
page. Ensure the CFPA version being provisioned has a higher version than the CFPA page currently used
in the processor. Erase the whole flash.

• Open the manufacturing dialog from the Main menu > Tools > Manufacturing Tool and confirm to re-
generate the trust provisioning script. Select the trust provisioning operation, use default arguments for the
trust provisioning command.

• Ensure that the Smart Card is properly selected and click the Refresh button to check that communication
with the Smart Card can be established and the production limit on the Card is non-zero. Ensure the
application firmware and provisioning firmware and audit log are selected. For some processors, there might
be two different versions of provisioning firmware depending on the silicon revision. In this case, provisioning
firmware is not selected by default, it is auto-detected by the Test connection button.

• Boot the processor into the ISP mode and connect it via a serial port or USB to your computer.
• Click the Auto detect button to update the connected board in the Connected devices table.
• If the corresponding serial port is listed, ensure it is enabled and all other serial ports are disabled and click

the Test connection button to ensure that the communication with the target processor can be established.
Verify, that all connected devices are listed in the table. If the table contains devices, that should not be

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
104 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

configured, such as other serial ports with other devices, disable them. Then click the Test connection button
to ensure that the communication with the target processor can be established.

• To start the trust provisioning operation, click the Start button.
Note: It is an irreversible operation, it can be executed only once for each processor.
The operation consists of three phases:
– Load trust provisioning firmware into the processor (this operation can be executed in parallel)
– Provisioning asserts to the processor using Smart Card (this operation can be executed only one per Smart

Card)
– Application phase: install custom application firmware into the processor (this operation can be executed in

parallel)

6.10.4 Preparation of the final data for factory

On the Smart Card management view, go to the Manufacturing package section and click the Create
package button. Select the filename of the ZIP file and save.

Manufacturing package contains:

• Asset provisioning firmware, including license and software content register (these files are processor-
specific, so the attached documents may vary per device).

• Your application firmware is encrypted in the SB capsule.

Click the Prepare Smart Card button again and confirm sealing. Do it for all the cards before shipment.
The seal status can be checked in the Trust Provisioning dialog with the Test connection function, see
Section 5.1.8.

Then send the Smart Card and the manufacturing package ZIP file to the factory.

It is also recommended to back up the complete configuration including all keys into a safe location, this means,
back-up workspace and all the used files outside the workspace.

6.10.5 Factory: Manufacturing process

Import manufacturing package, see Section 6.1.3.1 Manufacturing workspace for details.

When the import operation is successfully done, Manufacturing Tool is open, see the picture below. The
workspace is in the Manufacturing mode, it shows that the Manufacturing Tool with the trust provisioning
operation enabled only and does not allow other operations like Building or Writing the image.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
105 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Figure 70. Manufacturing Tool

Use default arguments for the trust provisioning command.

Insert a Smart Card into your computer (if you have a built-in reader) or connect an external Smart Card reader.
To find the connected Smart Cards, click the Refresh button. Verify, that production limit available on the Smart
Cards is higher than number of connected processors.

Select the audit log file, that is created during firmware provisioning. It is not allowed to use one log file for
several Smart Cards. It is recommended to use one log file per Smart Card.

For serial connection:

Adjust the baud rate, the default value is 115200; however, it was successfully tested baud rates up to 1000000.

Production steps:

1. Connect one or more processors via USB or serial line and click the Autodetect button to detect the
connected devices. In case the tool detects devices, that should not be affected by the manufacturing,
such as serial ports used by other devices, disable them. Then click Test connection below to check the
connection with all enabled processors and ensure the test pass. The tool may contain several versions of
the provisioning firmware for different silicon revisions. If the provisioning firmware is not autoselected, click
the Test connection button provides detection of the silicon revision and assignment of the firmware.

2. To start the trust provisioning operation, click the Start button. Wait until all operations are finished.
3. Continue with step 1

The number of successfully provisioned devices is displayed on the bottom of the Manufacturing Tool window.
This number is not 100% reliable, it is recommended to check remaining production limit reported for the
connected Smart Cards.

After the production is done, click the Export logs button to export the log into the audit log package and send it
to OEM.

If the trust provisioning operation fails, it depends on the status of the device, whether the next attempt can
succeed. It is recommended to reset the device before the operation is repeated.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
106 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

6.10.6 Audit log verification at OEM side

Audit log package contains:

• Audit log, SQL lite DB, that is used for verification and contain certificates
• LOGs from the manufacturing process, text files

To verify the audit log package, open the Smart Card management view and ensure that the corresponding
Production audit log key is selected.

If the audit log contains device identities, you can optionally export certificates generated for each device. In this
case, configure the corresponding parameters (see the next chapter for details).

Click the Verify audit logs button and select the path to the received audit log ZIP package. After the
verification is completed, find the detailed results in the LOG view.

6.10.7 Device identity and cloud service provider registration

IoT applications naturally rely on the services provided by the cloud for their operation; therefore, cloud services
must have the means to verify the device identity against a known trusted source. OEM can prepare cloud
infrastructure by pre-registering all device unique certificates if available, or by registering a single CA against
which all devices are verified upon connection. In the latter case, the infrastructure verifies that the device
unique certificates have been signed by the user-specified CA and automatically registers the devices.

6.10.7.1 Configure device identity

Trust provisioning capabilities in the Secure Provisioning Tool complement the just-in-time provisioning flow. The
Device Identity Configuration window expects an OEM CA certificate as an input in the Issuer view, along
with the list of X.509 attributes that define what the unique device certificates must contain and where must
they reside. During the manufacturing process, device-unique certificates are generated and signed in a secure
way in the Smart Card by the CA. They can be installed in the desired location for use when interacting with the
cloud. The certificates are generated in the X.509 format and during the device provisioning they are recorded
into the audit log. When extracted from the audit log, they can be directly used within the cloud.

Some processors may support generation of the following certificate types:

• CA: see USKS usage control property in the processor Reference Manual.
• RTF: see URTF usage control property in the processor Reference Manual.

On the Smart Card management view, go to the Smart Card configuration section, enable Device identity
and click the Device identity configuration... button.

• In the configuration dialog, specify the number of device identity private/public key pairs to be generated
during provisioning.

• Specify the duration for generated certificates.
• In the Certificate addresses section, specify the addresses where the corresponding certificates will be

placed in the device NVM memory of the target processor.

• In the Certificate fields section on the Subject view, you can optionally configure X.509 attributes for the
device identity certificates. On the Issuer view, import the attributes for the device identity certificate signing
key from the CA certificate or edit the attributes manually.

In the Smart Card configuration section, specify the certificate signing key to be used for signing the
generated device certificates.

The details about the information created in the flash during trust provisioning process can be found in SPSDK
documentation, see main menu > Help > SPSDK Online Documentation.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
107 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

6.10.7.2 Extract certificates from the audit log package

During verification of the audit log, it is possible to optionally extract device certificates. The NXP identity
certificates are generated in the process of verifying that provisioning happens on a genuine NXP device.
Typical use cases do not require their use; for example, registration of a device with a cloud provider can be
done with the device identity certificates as described in the sections above.

You can use the Extract certificates checkbox to enable the feature. Select whether you want to extract device
certificates only or also NXP identity certificates; the format of device identity certificates is selectable, while
NXP identity certificates are always in binary form. Specify target directory, it must be always selected empty or
new directory.

6.10.7.3 Deploy certificates

Before provisioned devices can interact with IoT cloud services, the CA should be registered with the cloud
provider. The procedure varies across vendors. Find some useful resources below:

1. Amazon Web Services IoT:
• https://docs.aws.amazon.com/iot/latest/developerguide/iot-provision.html
• https://docs.aws.amazon.com/iot/latest/developerguide/jit-provisioning.html
• https://docs.aws.amazon.com/iot/latest/developerguide/register-device-cert.html

2. Microsoft IoT Hub
• https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-x509ca-concept
• https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-x509ca-overview

6.11 Debug authentication
This section describes the process of opening the debug port. This tool offers Debug Authentication Protocol
(DAP) as a mechanism to authenticate the debugger (an external entity) for the field technician, which has the
credentials approved by the product manufacturer (OEM) before granting the debug access to the device. For
Debug Authentication (DA) to work, processor-specific fuses or PFR fields must be set. For more information
see the device user manual, chapter Debug subsystems.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
108 / 129

https://docs.aws.amazon.com/iot/latest/developerguide/iot-provision.html
https://docs.aws.amazon.com/iot/latest/developerguide/jit-provisioning.html
https://docs.aws.amazon.com/iot/latest/developerguide/register-device-cert.html
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-x509ca-concept
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-x509ca-overview

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Figure 71. Debug Authentification protocol usage example

To open the debug port, do the following:

Field Technician

1. Contact OEM to acquire the key type and the length of ROT. OEM decides whether to use the generated
certificate for any device with the same ROT keys or just one by specifying the UUID.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
109 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

2. In the SEC tool, create a workspace for the used target device, switch to the "PKI Management" view
3. Generate a debug key, the DA key type and the length must be the same as that of the ROT key
4. Create debug certificate request, specify UUID to limit use of debug certificate. If the UUID is set to

zero it can be used for any device. UUID can be read from a device, via UART or USB if the device is in
the development life cycle. Or via the debug probe when the device is in the advanced life cycle, on most
devices CHECK_UUID must be set in the SOCU register/PFR field, for this option to work.

5. Send the certificate request to OEM
6. After OEM sends the certificate, select Open debug port. Connected probes are detected upon dialog

display. The list of detected probes can be updated by Find probes. Select one of the detected probes.
The authentication beacon is in no way dependent on the credential beacon provided by the OEM. It is not
interpreted by the debug authentication protocol, it is passed to the debugged application. When the dialog
is confirmed, there is a script generated into workspace\debug_auth\open_debug_port.[bat|sh] and the
script is executed. The dialog will be closed if no error is reported by the script (the operation is successful).
In case of failure, refer to Section 8.11 for useful tips how to enable debug authentication.
Note: nxpdebugmbox CLI tool can be found in <installation_dir>/tools/spsdk/ folder

Figure 72. Dialog for opening debug port

OEM

Having the request received, click Generate debug certificate.

The certificate is by default generated into <workspace>/debug_auth folder, debug_auth_cert.dc. A
*.zip folder with the same name is created, it contains the certificate and the .txt file note from OEM. The note
that is passed from field technician to OEM is displayed in the note field (see Figure 73).

• SoC – mask value of DCFG_CC_SOCU controlling which debug domains are accessed via the authentication
protocol

• Vendor usage – field that can be used to define a vendor-specific debug policy. The use case can be Debug
Credential (DC) certificate revocations, the department identifier or the model identifier.

• Credential beacon – value that is not interpreted by DAP, it is passed to the application. The value is
independent of the authentication beacon that will be provided by the field technician when the port is opened.

• Note - text field where OEM can describe comments about reasons to generate the certificate
• Sign with ROT key - sign the certificate with one of the ROT keys that were used to secure the device.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
110 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Figure 73. Generation of debug certificate from certificate request

6.11.1 Example of access rights to debug domains

Examples are intended for testing purposes. Before the final usage, the setting should be revisited and modified
to fulfill security requirements. In all examples below, ISP is enabled and UUID check is disabled. For some
processors, UUID check must be set to enable the read of UUID by a debug probe.

Fuse Everything disabled Everything enabled Controlled by DA

DCFG_CC_SOCU, DCFG_
CC_SOCU_NS

0x80FF408D 0x80FFFF20 0x00404088

DCFG_CC_SOCU_AP 0x7F00BF72 0x7F0000DF 0xFFBFBF77

Table 12. RTxxx

Fuse Everything disabled Everything enabled* Controlled by DA

DCFG_CC_SOCU, DCFG_
CC_SOCU_NS

0x3FFA007E 0x3FFFFF14 0x1002000F

DCFG_CC_SOCU_AP 0xC005FF81 0xC00000EB 0xEFFDFFF0

*For debugging, authentication is still required but the domain cannot be disabled by the SoC mask in the DAC.

Table 13. RW61x

PFR field Everything disabled Everything enabled* Controlled by DA

DCFG_CC_SOCU_NS_PIN, 0xF81007EF 0xF81007EF 0xFFBF0040

Table 14. MCX Nx4x

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
111 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

PFR field Everything disabled Everything enabled* Controlled by DA
DCFG_CC_SOCU_PIN

DCFG_CC_SOCU_NS_
DFLT,
DCFG_CC_SOCU_DFLT

0xFFBF0040 0xF81007EF 0xFFBF0040

*For debugging, authentication is still required but the domain cannot be disabled by the SoC mask in the DAC.

Table 14. MCX Nx4x...continued

PFR field Everything disabled Everything enabled Controlled by DA

DCFG_CC_SOCU_NS_PIN,
DCFG_CC_SOCU_PIN

0xFD0002FF 0xFD0002FF 0xFFBF0040

DCFG_CC_SOCU_NS_
DFLT,
DCFG_CC_SOCU_DFLT

0xFFBF0040 0xFD0002FF 0xFFBF0040

Table 15. LPC55Sxx

PFR field Everything disabled Everything enabled* Controlled by DA

DCFG_CC_SOCU_NS_PIN,
DCFG_CC_SOCU_PIN

0xFE3001CF 0xFE3001CF 0xFFFF0000

DCFG_CC_SOCU_NS_
DFLT,
DCFG_CC_SOCU_DFLT

0xFFBF0040 0xFE3001CF 0xFFFF0000

*For debugging, authentication is still required but the domain cannot be disabled by the SoC mask in the DAC.

Table 16. LPC55S3x

Fuse Everything disabled Everything enabled Controlled by DA

DCFG_CC_SOCU_L1,
DCFG_CC_SOCU_L2

0x000000FF 0x0000FFFF 0x00004040

DBG_AUTH_DIS 0x0 0x0 0x0

Table 17. KW45xx/K32W1xx

RT 118x does not have any fuse to control debugging rights. Debugging depends on the LC, for OEM_OPEN:
all debug allowed, OEM_CLOSE: all closed but can be enabled by DAC, and OEM_LOCKED: all closed and
cannot be enabled. The only way to manage debugging rights in OEM_CLOSE is by setting the SoC in DAC.
For examples of SoC masks, see the device user manual.

6.12 Signature provider workflow
This section describes the process of setting up signature provider and building image signed by the signature
provider. There are examples of signature provider server located in <install_folder>/bin/resources/signature_pr
ovider_example, one working with ROT ECC keys and other with ROT RSA keys. These examples demonstrate
full implementation of the API, however in real world, it is expected the implementation will be changed by
communication with HW HSM module or custom HTTPS communication to another server. Both examples of

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
112 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

server can be used as they are to test tool behavior when using signature provider. Each server has example
private keys and prepared public key response for public_keys_certs endpoint. Prepared ECC/RSA public tree
have 4 ROT keys/certs and each ROT key/cert has one IMG key/cert. These keys should not be used in final
products.

Figure 1 display variants of signature provider, SEC tool send requests to Custom signature provider HTTP
server, this server should pass the request to one of the secure solutions and then pass the response back to
SEC tool. Prepared examples implement only the Custom signature provider HTTP server, example server is
doing all the operation that should be done by HSM or external signature provider. It is up to user to implement
complete solution.

Figure 74. Expected structure of signature provider

6.12.1 Run the server

To run, several prerequisites are required:

• Python 3.10 or later
• Python packages specified in requirements.txt. Using a virtual environment is recommended.

To start the required server, launch the following command on the command line: python server.py

The server logs every action, so it is possible to review what actions were executed.

6.12.1.1 Set up in the SEC tool

To use the signature provider example with the SEC tool, follow these steps:

1. Create/use workspace for the processor.
2. Select the check-box Use sign. provider on the PKI tab. If there are keys in the workspace, they will be

moved to a back-up subfolder in the workspace.
3. Open the signature provider dialog by clicking Configure… next to the check-box from step 2.
4. Review the default parameters of your signature provider, if using the signature provider server from

resources\signature_provider_example the setting can be left as is.
MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
113 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

5. Click the Test connection button to verify if the server is configured properly.
6. There are two options to Import public keys:

• In the same dialog, click the Import public keys button to import public keys from the server;
this is a recommended way, however it can be used only if the server implements optional API
public_keys_certs.

• Close the dialog and go back to PKI management tab and click the button Import keys to import public
keys from the previous workspace. Make sure that public keys match private keys that are used on the
signature provider site (copy the keys to the folder with the signature provider example).

7. On the Build tab select the key as normally, now config files for SB, MBI, and certification block will be using
the signature provider configuration.

8. Now, the signature provider is configured. It is possible to build a signed image.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
114 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

7 Command-line operations

SEC also offers a command-line interface, enabling integration in automated environments or customization
of image building/burning procedure. Operation requires a verb identifying the top-level operation (building,
flashing, provisioning, generating keys or detecting the list of USB devices) and additional operation-specific
options.

To display available commands, arguments, and examples, run the following command from the command
prompt:

c:/nxp/MCUX_Provi_v4.1/bin/securep.exe -h

To display available arguments for a specific command, run the following command from the command prompt:

c:/nxp/MCUX_Provi_v4.1/bin/securep.exe <command> -h

Note: The location of the file is subject to installation folder.

7.1 Build
With the build command, you can perform actions that you can otherwise perform in the Build image view of
SEC.

7.1.1 Build arguments

The following arguments are available to the build command:

Argument Description

-h, --help Show this help message and exit.

--source-image SOURCE_IMAGE Source image for building the boot image.

--start-address START_ADDRESS Start address of the executable image data within the source
image. Applicable and required only for binary source
images.

--image-version IMAGE_VERSION The version of the bootable image can be either in 4-bytes
format, for example, 0xFFFE0001 (the lower 2 bytes are the
real version number, and the upper 2 bytes are the invert
value of lower 2 bytes) or just the real version number (2
bytes). The argument is only applicable for processors that
support the image version on the build tab.

--firmware-version FIRMWARE_VERSION Version of the application image firmware. The argument
is applicable for K32W1xx, KW45xx, LPC55S3x, RT118x,
MCXN94x, MCXN54x, RW61x processors.

--ele-firmware ELE_FIRMWARE Path to the EdgeLock Enclave (ELE) firmware file. The
argument is applicable for encrypted boot types for
processors with the AHAB security system.

--dekkey DEKKEY 32/48/64 HEX characters: data encryption key used for
AHAB encryption. The argument is applicable for processors
with the AHAB security system.

Table 18. Build-specific arguments

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
115 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Argument Description

--keyblob-keyid KEYBLOB_KEYID 32-bits value: Keyblob encryption key identifier. The
argument is applicable for processors with the AHAB
security system.

--target-image TARGET_IMAGE Target image for building the boot image.

--secret-key-type {AES-128, AES-192, AES-256} The HAB encryption algorithm, default is processor-specific.

--img-cert IMG_CERT Path to the public IMG key file that is used for signing the
image. It is recommended to use the command with a
workspace with already initialized key management. If the
keys are not specified in the workspace settings file, they are
imported.

--csf-cert CSF_CERT Path to the public CSF key file that is used for signing
the image. If not specified then it is derived from the img-
cert pathname according to the HAB4 PKI Tree naming
convention.

--dcd DCD Path to the Device Configuration Data binary file.

--xip-enc-otpmk-config XIP_ENC_OTPMK_CONFIG JSON file with the XIP Encryption with OTPMK
configuration. See the schema/xip_enc_otpmk_schema_v?.
json in the installation folder. The argument is applicable for
XIP encrypted (BEE OTPMK) and XIP encrypted (OTFAD
OTPMK) boot types only.

--bee-user-keys-config BEE_USER_KEYS_CONFIG JSON file with the BEE configuration. See the schema/bee_
image_encryption_schema_v2.json in the installation folder.
The parameter is applicable for encrypted XIP (BEE user
keys) boot type only.

--otfad-config OTFAD_CONFIG JSON file with the OTFAD configuration. See the schema/
otfad_image_encryption_schema_v?.json in the installation
folder. The parameter is applicable for OTFAD encrypted
boot type only.

--iee-config IEE_CONFIG JSON file with the IEE configuration. See the schema/iee_
image_encryption_schema_v?.json in the installation folder.
The parameter is applicable for IEE encrypted boot type
only.

-v, --verbose Increase output verbosity

--device name of the selected processor Target processor

--boot-type VALUE Secure boot type. Run securep --help to see all supported
boot types.

--life-cycle VALUE Requested life-cycle state of the processor, one of closed_
deploy_infield_shadows,infield_locked_shadows,open_
develop,reduced,closed_deploy_infield,infield_
locked,closed_level_4.

--trust-provi {disabled, smart_card, device_hsm} Trust provisioning type.

--script-only Generate script only, do not launch

-w WORKSPACE, --workspace WORKSPACE Workspace location.
Note: Any settings from the workspace are loaded
automatically. All command-line parameters can be used to
override loaded settings.

Table 18. Build-specific arguments...continued

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
116 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Argument Description

--trust-zone TRUST_ZONE Either 'disabled' (for the TrustZone disabled image) or
'default' (for the TrustZone enabled image with default
data from the processor) or path to the custom TrustZone
configuration JSON file (for the TrustZone enabled image
with custom configuration)

--keysource {OTP, KeyStore} Key source for RTxxx secured images

--userkey USERKEY Key applicable for RTxxx secured images: for OTP key-
source it represents the master key; for key-store it
represents the key used for signature

--sbkek/--cust_mk_sk/--sb3kdk SBKEK 64 HEX characters: Key used as key encryption key to
handle SB2 file; Needed only for Secure Binary images; If
not specified, it is taken from workspace

--prince-cfg PRINCE_CFG JSON file with PRINCE configuration. See bin/schema/
prince_config_schema_v<version>.json in the SEC
installation folder.

--iped-cfg IPED_CFG JSON file with PRINCE configuration; file format is specified
by schema/prince_config_schema_v?.json

--otp-cfg OTP_CFG Path to JSON file with USER OTP configuration. It is
recommended to export the file from the OTP Configuration
dialog.

--cmpa-cfg CMPA_CFG Path to JSON file with USER CMPA configuration. It is
recommended to export the file from the PFR Configuration
dialog.

--cfpa-cfg CFPA_CFG Path to JSON file with USER CFPA configuration. It is
recommended to export the file from the PFR Configuration
dialog.

--romcfg-cfg ROMCFG_CFG Path to JSON file with USER ROMCFG configuration. It is
recommended to export the file from the IFR Configuration
dialog.

--cmpa-cfg/--cfpa-cfg PATH Path to JSON file with PFR configuration of the given CMPA/
CFPA page. It is recommended to export the file from the
PFR Configuration dialog.

--dual-image-boot-cfg DUAL_IMAGE_BOOT_CFG JSON file with dual image boot configuration; file format is
specified by schema/dual_image_boot_schema_v?.json.
The argument is applicable for RTxxx, RT116x, RT117x,
RT118x, LPC55S36 (only FlexSPI NOR) and LPC553x
processors.

--xmcd-cfg XMCD_CFG Path to YAML or binary file with the XMCD configuration
(simplified or full); for file format, see the SPSDK command
nxpimage bootable-image xmcd get-templates.
The argument is only applicable for RT116x, RT117x, and
RT118x processors.

Table 18. Build-specific arguments...continued

Argument Description

--boot-device VALUE Predefined boot memory. Run securep --help to see
all supported boot memories.

--boot-device-file BOOT_DEVICE_FILE File with boot memory configuration

Table 19. Boot-device arguments (mutually exclusive)

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
117 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Argument Description

--boot-device-type {flex-spi-nor, flex_spi_nand, onchip_memory,
sdhc_sd_card,semc_nand}

Boot memory type. Default-predefined boot memory of
this type is set.

Table 19. Boot-device arguments (mutually exclusive)...continued

7.2 Write
With the write command, you can perform actions that you can otherwise perform in the Write image view of
SEC.

7.2.1 Write arguments

The following arguments are available to the write command:

Argument Description

-h, --help Show this help message and exit

--source-image SOURCE_IMAGE Source image to be uploaded to the target

--write-params-cfg WRITE_PARAMS_CFG JSON file with parameters needed in write and fuses to be
burnt by write script (or shadow registers). See the schema/
write_parameters_schema_v?.json in the installation folder.

--life-cycle VALUE Requested life-cycle state of the processor, one of open_
develop, closed_deploy_infield, infield_locked.

--trust-provi {disabled,smart_card,device_hsm} Trust provisioning type.

-v, --verbose Increase output verbosity

--device name of the selected processor Target processor

--boot-type VALUE Secure boot type. Run securep --help to see all supported
boot types.

--script-only Generate script only, do not launch

-w WORKSPACE, --workspace WORKSPACE Workspace location.
Note: Any settings from the workspace are loaded
automatically. All command-line parameters can be used to
override loaded settings.

Table 20. Write-specific arguments

For mutually exclusive boot-device arguments, see Table 19

Argument Description

--usb VID PID Connect to target over USB HID device denoted by vid/pid. USB HID connection is default. vid/pid can
be specified in decimal form (for example, '123') or hexadecimal form (for example, '0xbeef').

--uart UART Connect to target over UART. Specify COM port (see --baud-rate argument). Example: --uart COM3

--i2c address
speed_kHz

Connect to target over I2C via USB bridge. Specify I2C device address and clock in kHz. SIO device
is autoselected if the --sio-device argument is not specified. Example: --i2c 0x10 400

--spi speed_kHz
polarity phase

Connect to target over SPI via USB bridge. Specify SPI clock in kHz, polarity (SPI CPOL option) and
phase (SPI CPHA option). SIO device is autoselected if the --sio-device argument is not specified.
Example: --sp
i 1000 1 1

Table 21. Connection arguments (mutually exclusive)

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
118 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Argument Description

--baud-rate BAUD_
RATE

Connect to target over UART with a specified baud rate. --uart argument has to be specified too.
Example: --baud-rate 9600

--sio-device SIO_
DEVICE

Connect to target over USB-SIO (I2C or SPI) via a specified SIO device. --i2c or --spi argument has to
be specified too. Example: --sio-device HID\VID_1FC9&PID_0090&MI_03\7&96E050B&0&0000

Table 21. Connection arguments (mutually exclusive)...continued

Note: For connection to the board, USB or Serial port has to be specified. If nothing is specified, USB
autodetection is applied.

7.3 Generate keys
With the Generate command, you can perform actions that you can otherwise perform in the Generate Keys
view. Compared to GUI, command line functionality is restricted.

7.3.1 Generate keys arguments

Following arguments are available to the generate command:

Argument Description

-h, --help Show this help message and exit

--keys-cfg KEYS_CFG JSON File with the keys configuration

--device name of the selected processor Target processor

--boot-type VALUE Secure boot type. Run securep --help to see all supported
boot types.

--script-only Generate script only, do not launch

-w WORKSPACE, --workspace WORKSPACE Workspace location.
Note: Any settings from the workspace are loaded
automatically. All command-line parameters can be used to
override loaded settings.

Table 22. Generate-specific arguments

For boot memory arguments, see Table 19

7.4 Manufacture

7.4.1 Manufacture arguments

Manufacture command allows running the selected script several times in parallel, each time for different
connection. Following arguments are available to the manufacture command:

Argument Description

-h, --help Show this help message and exit

--script_path SCRIPT_PATH Path to the script to be executed

--script_params SCRIPT_PARAMS Parameters of the script. For more information, see
Manufacturing.

Table 23. Manufacture-specific arguments

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
119 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Argument Description

--connections CONNECTIONS [CONNECTIONS …] List of all connections devices to be used in manufacturing,
in format "-p <port>,<baud>" or "-u <usb-path>"
or "-l usb,<usb-path>,spi[,<port>,<pin>,<speed_
kHz>,<polarity>,<phase>]" or "-l usb,<usb-
path>,i2c[,<address>,<speed_kHz>]". To find all
available USB/USB-SIO connections, automatically
use "-u <autodetect-all-USBs>" or "-l usb,<autodetect-
all-USBSIOs>,spi[,<port>,<pin>,<speed_k
Hz>,<polarity>,<phase>]" or "-l usb,<autodetect-all-
USBSIOs>,i2c[,<address>,<speed_kHz>]". The options for
auto-detection cannot be combined with the other options.
Parameters and default values for SIO operation are
described in SPSDK documentation.

Table 23. Manufacture-specific arguments...continued

7.5 Command-line examples
Example: How to build and write an image for configuration stored in /workspaces/mcuxprovi in the
workspace folder.

In this example, it is assumed that the GUI was already used to prepare complete configuration within a
workspace (keys generated, build image configured, write image configured).

securep.exe -w /workspaces/mcuxprovi build

securep.exe -w /workspaces/mcuxprovi write

For detailed examples, use the following command:

securep.exe print-cli-examples

7.6 Command-line tools
SEC uses the following command-line tools to generate keys and build/write the image:

openssl Key generation
spsdk Secure Provisioning SDK, for more information, see main menu > Help

> SPSDK Online Documentation. The following tools are available as
part of SPSDK:

blhost Replacement for the legacy blhost tool
ifr Generating the content of the flash region file

(ROMCFG).
nxpcrypto Operations with keys and certificates
nxpdebugmbox Debug mailbox and debug credential file

generator tool.
nxpdevhsm The application is designed to create an SB3

provisioning file for initial provisioning of the
device by OEM.

nxpdevscan Utility that detects NXP devices connected to
the host PC over USB, UART, I2C, and SPI
connections.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
120 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

nxpele Utility for communication with the EdgeLock
Enclave on target

nxpimage Builds bootable image and SB files
pfr Generating protected flash region files

(cmpa/cfpa)
sdphost Replacement for the legacy sdphost tool
shadowregs Shadow registers control tool.
tpconfig Configuration of Smart Card for trust

provisioning
tphost Trust provisioning operation

8 Troubleshooting

This chapter contains known problems and recommended solutions. Refer to Release Notes for last-minute
issues.

• The application must be installed into the location where the user has write access.
• By default, Secure Provisioning Tool does not configure all possible security features that are available in the

processor. Only the ones required by the selected boot type are configured. Configure the rest in OTP/PFR/
IFR Configuration.

• If the tool is started with the option -v (verbose mode), it provides additional details (logs) that can be used to
analyze and fix problems.

8.1 Windows
• On the Windows platform, make sure that the windows FIND utility is found first on the PATH (GNU find utils

could break the functionality).

8.2 Linux
• On the Linux platform, the USB and/or Serial device files have to be readable and writable by the current user.

To solve this issue, see resources/udev/99-secure-provisioning.rules installed into /etc/
udev/rules.d/99-secure-provisioning.rules . There can be a conflicting rule with higher priority
on the machine. In this case, update the conflicting rule or make this rule file with higher priority by renaming
the file with a lower number at the beginning.

• Ubuntu 22 and USB2Serial CP210x. On Ubuntu 22, there is a conflicting package brltty that causes generic
issues with CP210x USB to serial converter. Uninstalling the `brltty` package fixes the issue. For more details,
see https://bugs.launchpad.net/ubuntu/+source/brltty/+bug/1970408

• The SEC tool works well with the Xorg display server. Wayland, default in Ubuntu, causes various UI glitches,
that is why application shortcut contains configuration to use Xorg (x11) backend. If SEC GUI is executed
manually under the Wayland display server, make sure it is executed with proper environment variables, for
example:
UBUNTU_MENUPROXY=0 GDK_BACKEND=x11 /opt/nxp/MCUX_Provi_v8/bin/securep

8.3 Mac OS X
• Fields with invalid input are marked with a background red color. Fixing the value might not change the

background color correctly and the focus must be changed to another field for correct repaint.
• P&E Micro does not support Mac OS Aarch64 yet.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
121 / 129

https://bugs.launchpad.net/ubuntu/+source/brltty/+bug/1970408

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

8.4 i.MX RTxxx
• Repetitive write to QSPI flash might fail in case the board is not reset and the reset pin is not configured in

fuses. For more information, see documentation RTxxx Device workflow/Booting images chapters.

• If shadow registers are used, it is necessary to HW reset the processor, before a new image or fuses
configuration is applied because the shadow registers can be set in the processor only if the processor is
unsecured.

8.5 i.MX RT1024
SD card boot device is not supported for the MIMXRT1024-EVK board due to limitation in flashloader.

8.6 i.MX RT1015-EVK / Mac OS X / UART
OpenSDA does not work on Mac OS X when the device has HAB enabled and the UART port is used for
communication. Either use USB HID communication, or disconnect OpenSDA from RX and TX pins (jumpers
J45 and J46). The device must be programmed via an external USB to serial converter (3.3 V).

8.7 i.MX RT1060-EVK / Mac OS X / UART
For communication over UART on MacOS, open J44 jumper (SDA_RST_TGTMCU).

8.8 Bootable image as source for build
On the build view, the bootable image can be used as input only for RT10xx processors. Support of other
processors is planned for the next version.

8.9 Workspace compatibility

When workspace is opened in the newer version, it is automatically converted into new format that prevents
opening in previous version of the SEC (SEC tool might not start). To open it back in older tool, settings backup
is created in the workspace and manual file rename has to be done.

8.10 Debug probes
• Detecting PEmicro probes and detection of probes after PEmicro was detected has these limitations:

1. PEmicro must be connected before the first attempt for detection, if not connected it will be impossible to
detect and the SEC tool must be restarted for detection to succeed.

2. When PEmicro is detected, it is impossible to detect any other PYOCD probe without restarting the
SEC tool. Also, if PEmicro is once detected it will be always listed as an available probe even if it is not
connected anymore.

• On Mac OS, the PEmicro debug probe does not work with the pyOcd library, it is recommended to use the PE
micro-library.

• Dependency on USB drivers for debug probe drivers is described in ReleaseNotes.txt in "System
requirements".

8.11 Debug authentication
If the Open debug port fails, there are usually no error messages (due to security reasons, the processor
returns only a general error code). Here are tips what to check to make it working:

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
122 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

• The processor should not be in ISP mode.
• The processor should be secured. The operation may fail if the debug port is already opened.

9 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

10 Revision history

Document ID Release date Description

MCUXSPTUG v.13 19 January 2024 Updated for MCUXpresso Secure Provisioning Tools v8.
Section 6.3, Section 6.8, Section 6.9 are added.

MCUXSPTUG v.12 12 July 2023 Updated for MCUXpresso Secure Provisioning Tools v7: minor
updates.

MCUXSPTUG v.11 15 March 2023 Updated for MCUXpresso Secure Provisioning Tools v6: minor
updates.

MCUXSPTUG v.10 13 January 2023 Added: support for LPC55S36, section "LPC55S3x device
workflow"; section Section 2 is modified.

MCUXSPTUG v.9 26 September 2022 Added: support for LPC55Sxx and LPC55xx families (LPC553x,
LPC552x, LPC551x, and LPC550x), Section 5.4.6, Section 5.8,
Boot device configuration are added.

MCUXSPTUG v.8 24 June 2022 Updated for MCUXpresso Secure Provisioning Tools v4.1

MCUXSPTUG v.7 09 May 2022 The term "Java Smart Card" is replaced with "Smart Card".

MCUXSPTUG v.6 22 April 2022 Updated for MCUXpresso Secure Provisioning Tool v4:
Section 6.10, and Section 8.8 are added, screenshots are
updated.

MCUXSPTUG v.5 30 September 2021 The acronym "SPT" is replaced with "SEC" in all the flowcharts of
the document.

Table 24. Revision history

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
123 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Document ID Release date Description

MCUXSPTUG v.4 28 July 2021 OTP/PFR Configuration rework, new workflows/flowcharts for
OTFAD boot type, restructuring, new device information, minor
changes

MCUXSPTUG v.3 20 April 2021 Updated for MCUXpresso Secure Provisioning Tools v3

MCUXSPTUG v.2 14 October 2020 Updated for MCUXpresso Secure Provisioning Tools v2.1

MCUXSPTUG v.1 25 August 2020 Updated for MCUXpresso Secure Provisioning Tools v2

MCUXSPTUG v.0 08 January 2020 Initial version

Table 24. Revision history...continued

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
124 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.
Amazon Web Services, AWS, the Powered by AWS logo, and FreeRTOS
— are trademarks of Amazon.com, Inc. or its affiliates.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
125 / 129

mailto:PSIRT@nxp.com

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.
Apple — is a registered trademark of Apple Inc.
EdgeLock — is a trademark of NXP B.V.
Freescale — is a trademark of NXP B.V.

IAR — is a trademark of IAR Systems AB.
i.MX — is a trademark of NXP B.V.
Intel, the Intel logo, Intel Core, OpenVINO, and the OpenVINO logo —
are trademarks of Intel Corporation or its subsidiaries.
J-Link — is a trademark of SEGGER Microcontroller GmbH.
MCX — is a trademark of NXP B.V.
Microsoft, Azure, and ThreadX — are trademarks of the Microsoft group of
companies.
Oracle and Java — are registered trademarks of Oracle and/or its affiliates.

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
126 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

Contents
1 Introduction .. 2
2 Features ..2
3 Terms and definitions 3
4 Installation .. 5
4.1 Minimum system requirements5
4.2 Windows .. 5
4.2.1 Windows CLI ... 9
4.3 MacOS ...9
4.3.1 Enabling USB connection on MacOS 13
4.4 Linux .. 14
4.5 Uninstalling .. 14
4.5.1 Windows .. 14
4.5.2 MacOS ...15
4.5.3 Linux .. 15
4.5.4 Remove configuration files 16
4.5.5 Remove restricted data 16
5 User interface ...16
5.1 Menu and settings ... 17
5.1.1 Title of the Main Window17
5.1.2 Menu bar ... 17
5.1.3 Preferences ..19
5.1.4 Workspaces ... 20
5.1.4.1 Manufacturing workspace22
5.1.4.2 Sharing and copying workspaces 22
5.1.5 Toolbar ... 23
5.1.6 Connection ...23
5.1.7 Boot memory configuration25
5.1.7.1 FlexSPI NOR ... 26
5.1.7.2 OnChip RAM ... 26
5.1.8 Trust provisioning .. 27
5.1.9 Debug Probe Selection dialog 28
5.2 Build image ..29
5.2.1 Source image formats 32
5.2.2 XMCD Editor ..32
5.2.3 TrustZone configuration file 33
5.2.4 OTP/PFR/IFR configuration34
5.2.4.1 Table of all items ... 34
5.2.4.2 Tree-filtering toolbar ...35
5.2.4.3 Item editor ..35
5.2.4.4 Buttons ...35
5.2.4.5 Read from connected device36
5.2.4.6 Required value .. 36
5.2.4.7 Burn fuse ... 36
5.2.4.8 Locks ..37
5.2.4.9 Calculated fields .. 38
5.2.4.10 Validation and problem resolution38
5.2.4.11 Advanced mode ...38
5.2.4.12 Write/Burn .. 39
5.2.4.13 PFR/IFR and OTP differences39
5.2.5 Additional User/OEM AHAB images39
5.3 Write image ... 40
5.3.1 Manufacturing package 42
5.4 PKI management ...42
5.4.1 Generate keys ... 43
5.4.2 Add keys ..45
5.4.3 Re-generate certificate 45

5.4.4 Import/Export keys ...45
5.4.5 Keys for trust provisioning 46
5.4.6 Debug Authentication 46
5.4.7 Signature provider ... 46
5.4.7.1 URL parameters .. 47
5.4.7.2 Payload parameters ...47
5.4.7.3 Buttons and Base URL48
5.4.7.4 Signature provider server API 48
5.4.7.5 Server examples ..49
5.5 Smart Card management 49
5.5.1 Smart Card configuration49
5.5.2 Manufacturing package 50
5.5.3 Factory audit logs .. 50
5.6 Log ...50
5.7 Manufacturing Tool .. 51
5.7.1 USB path ... 54
5.8 Flash Programmer ...54
5.9 SB editor ..57
5.9.1 Properties view .. 57
5.9.2 Commands view .. 58
5.9.3 $ Variables ...59
5.9.4 Creating a manufacturing package button 59
5.9.5 To Manufacturing button 59
6 Workflow ...59
6.1 Common steps .. 59
6.1.1 Downloading MCUXpresso SDK 59
6.1.2 Opening example project60
6.1.3 Building example project 61
6.1.4 Setting up Secure Provisioning Tool 61
6.1.5 Preparing secure keys61
6.2 RT10xx/RT116x/RT117x device workflow61
6.2.1 Preparing source image 61
6.2.1.1 Image running from external NOR flash 62
6.2.1.2 Image running in internal RAM62
6.2.1.3 Image running from external SDRAM63
6.2.2 Connecting the board 64
6.2.3 Booting images ..65
6.2.3.1 Booting unsigned image 66
6.2.3.2 Booting authenticated (HAB) image 66
6.2.3.3 Booting encrypted (HAB) image 67
6.2.3.4 Booting XIP encrypted image (BEE

OTPMK) authenticated (RT10xx)68
6.2.3.5 Booting XIP encrypted image (BEE user

keys) unsigned (RT10xx)69
6.2.3.6 Booting XIP encrypted image (BEE user

keys) authenticated (RT10xx)70
6.2.3.7 Booting XIP encrypted image (OTFAD

OTPMK) authenticated (RT10xx)71
6.2.3.8 Booting OTFAD encrypted image unsigned

with user keys. ...71
6.2.3.9 Booting OTFAD encrypted image

authenticated with user keys 72
6.2.3.10 Booting IEE encrypted image unsigned

(RT116x/7x) ... 73
6.2.3.11 Booting IEE encrypted image authenticated

(RT116x/7x) ... 74
MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
127 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

6.2.4 Creating/Customizing DCD files 75
6.3 RT118x device workflow75
6.3.1 Preparing source image 75
6.3.2 Connecting the board 76
6.3.3 Booting images ..76
6.3.3.1 Booting unsigned image 77
6.3.3.2 Booting signed image77
6.3.3.3 Booting encrypted (AHAB) image78
6.3.3.4 Booting OTFAD encrypted image 78
6.3.3.5 Booting IEE encrypted79
6.3.3.6 Booting multicore images 80
6.3.3.7 Life cycle ..81
6.3.3.8 Firmware version ... 81
6.4 LPC55(S)0x/1x/2x/6x device workflow81
6.4.1 Preparing source image 81
6.4.1.1 Image running from internal flash 82
6.4.2 Connecting the board 82
6.4.3 Booting images ..83
6.4.3.1 Security levels ... 83
6.4.3.2 Booting Plain/Plain with CRC image83
6.4.3.3 Booting signed or PRINCE encrypted

image ... 84
6.4.3.4 PUF KeyStore ..84
6.5 LPC55(S)3x device workflow85
6.5.1 Preparing source image 85
6.5.2 Connecting the board 86
6.5.3 Booting images ..86
6.5.3.1 Booting plain image or plain with CRC

image ... 86
6.5.3.2 Booting signed image86
6.5.3.3 Booting encrypted image87
6.5.3.4 Test life cycle ...87
6.5.3.5 Life cycle ..88
6.6 RTxxx device workflow 89
6.6.1 Preparing source image 89
6.6.1.1 Image running in external flash 89
6.6.1.2 Image running in internal RAM90
6.6.2 Connecting the board 90
6.6.3 Booting images ..91
6.6.3.1 Booting a plain/plain with CRC image 91
6.6.3.2 Booting signed image using shadow

registers ... 91
6.6.3.3 Booting OTFAD encrypted image using

shadow registers ... 92
6.6.3.4 Booting signed/encrypted image – burn

fuses .. 93
6.6.3.5 Securing the processor93
6.6.3.6 Device HSM provisioning 93
6.7 KW45xx/K32W1xx device workflow94
6.7.1 Preparing source image 94
6.7.2 Connecting the board 94
6.7.3 Booting images ..95
6.7.3.1 Booting plain image or plain with CRC

image ... 95
6.7.3.2 Booting signed image95
6.7.3.3 Booting PRINCE encrypted image 96
6.7.3.4 Life cycle ..96
6.8 RW61x device workflow 96
6.8.1 Preparing source image 96

6.8.2 Connecting the board 96
6.8.3 Shadow registers for fuses via debug probe97
6.8.4 Booting images ..97
6.8.4.1 Booting plain image or plain with CRC

image ... 97
6.8.4.2 Booting signed image98
6.8.4.3 Booting encrypted image99
6.8.4.4 Life cycle ..99
6.8.4.5 Device HSM and CUST_MK_SK99
6.9 MCX Nx4x/A14x/A15x device workflow 99
6.9.1 Preparing source image 100
6.9.2 Connecting the board 100
6.9.3 Booting images ..100
6.9.3.1 Booting plain image or plain with CRC

image ... 100
6.9.3.2 Booting signed image 101
6.9.3.3 Booting encrypted image101
6.9.3.4 Life cycle ..101
6.9.3.5 Test life cycle ...102
6.10 Smart Card trust provisioning workflow 102
6.10.1 Preparation of OEM-specific inputs 103
6.10.2 Configuration of Smart Card at OEM104
6.10.3 Testing the OEM configuration104
6.10.4 Preparation of the final data for factory105
6.10.5 Factory: Manufacturing process 105
6.10.6 Audit log verification at OEM side107
6.10.7 Device identity and cloud service provider

registration ... 107
6.10.7.1 Configure device identity 107
6.10.7.2 Extract certificates from the audit log

package ... 108
6.10.7.3 Deploy certificates ... 108
6.11 Debug authentication108
6.11.1 Example of access rights to debug domains ..111
6.12 Signature provider workflow 112
6.12.1 Run the server ...113
6.12.1.1 Set up in the SEC tool113
7 Command-line operations115
7.1 Build ...115
7.1.1 Build arguments ...115
7.2 Write ...118
7.2.1 Write arguments .. 118
7.3 Generate keys ... 119
7.3.1 Generate keys arguments 119
7.4 Manufacture ... 119
7.4.1 Manufacture arguments119
7.5 Command-line examples 120
7.6 Command-line tools120
8 Troubleshooting ...121
8.1 Windows .. 121
8.2 Linux .. 121
8.3 Mac OS X ..121
8.4 i.MX RTxxx .. 122
8.5 i.MX RT1024 ..122
8.6 i.MX RT1015-EVK / Mac OS X / UART122
8.7 i.MX RT1060-EVK / Mac OS X / UART122
8.8 Bootable image as source for build 122
8.9 Workspace compatibility 122
8.10 Debug probes .. 122

MCUXSPTUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 13 — 19 January 2024
128 / 129

NXP Semiconductors MCUXSPTUG
MCUXpresso Secure Provisioning Tool User Guide v.8

8.11 Debug authentication122
9 Note about the source code in the

document ..123
10 Revision history ...123

Legal information ...125

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com

Date of release: 19 January 2024
Document identifier: MCUXSPTUG

	1 Introduction
	2 Features
	3 Terms and definitions
	4 Installation
	4.1 Minimum system requirements
	4.2 Windows
	4.2.1 Windows CLI

	4.3 MacOS
	4.3.1 Enabling USB connection on MacOS

	4.4 Linux
	4.5 Uninstalling
	4.5.1 Windows
	4.5.2 MacOS
	4.5.3 Linux
	4.5.4 Remove configuration files
	4.5.5 Remove restricted data

	5 User interface
	5.1 Menu and settings
	5.1.1 Title of the Main Window
	5.1.2 Menu bar
	5.1.3 Preferences
	5.1.4 Workspaces
	5.1.4.1 Manufacturing workspace
	5.1.4.2 Sharing and copying workspaces

	5.1.5 Toolbar
	5.1.6 Connection
	5.1.7 Boot memory configuration
	5.1.7.1 FlexSPI NOR
	5.1.7.2 OnChip RAM

	5.1.8 Trust provisioning
	5.1.9 Debug Probe Selection dialog

	5.2 Build image
	5.2.1 Source image formats
	5.2.2 XMCD Editor
	5.2.3 TrustZone configuration file
	5.2.4 OTP/PFR/IFR configuration
	5.2.4.1 Table of all items
	5.2.4.2 Tree-filtering toolbar
	5.2.4.3 Item editor
	5.2.4.4 Buttons
	5.2.4.5 Read from connected device
	5.2.4.6 Required value
	5.2.4.7 Burn fuse
	5.2.4.8 Locks
	5.2.4.9 Calculated fields
	5.2.4.10 Validation and problem resolution
	5.2.4.11 Advanced mode
	5.2.4.12 Write/Burn
	5.2.4.13 PFR/IFR and OTP differences

	5.2.5 Additional User/OEM AHAB images

	5.3 Write image
	5.3.1 Manufacturing package

	5.4 PKI management
	5.4.1 Generate keys
	5.4.2 Add keys
	5.4.3 Re-generate certificate
	5.4.4 Import/Export keys
	5.4.5 Keys for trust provisioning
	5.4.6 Debug Authentication
	5.4.7 Signature provider
	5.4.7.1 URL parameters
	5.4.7.2 Payload parameters
	5.4.7.3 Buttons and Base URL
	5.4.7.4 Signature provider server API
	5.4.7.4.1 sign
	5.4.7.4.2 signature_length
	5.4.7.4.3 verify_public_key
	5.4.7.4.4 public_keys_certs

	5.4.7.5 Server examples

	5.5 Smart Card management
	5.5.1 Smart Card configuration
	5.5.2 Manufacturing package
	5.5.3 Factory audit logs

	5.6 Log
	5.7 Manufacturing Tool
	5.7.1 USB path

	5.8 Flash Programmer
	5.9 SB editor
	5.9.1 Properties view
	5.9.2 Commands view
	5.9.3 $ Variables
	5.9.4 Creating a manufacturing package button
	5.9.5 To Manufacturing button

	6 Workflow
	6.1 Common steps
	6.1.1 Downloading MCUXpresso SDK
	6.1.2 Opening example project
	6.1.3 Building example project
	6.1.4 Setting up Secure Provisioning Tool
	6.1.5 Preparing secure keys

	6.2 RT10xx/RT116x/RT117x device workflow
	6.2.1 Preparing source image
	6.2.1.1 Image running from external NOR flash
	6.2.1.2 Image running in internal RAM
	6.2.1.3 Image running from external SDRAM

	6.2.2 Connecting the board
	6.2.3 Booting images
	6.2.3.1 Booting unsigned image
	6.2.3.2 Booting authenticated (HAB) image
	6.2.3.3 Booting encrypted (HAB) image
	6.2.3.4 Booting XIP encrypted image (BEE OTPMK) authenticated (RT10xx)
	6.2.3.5 Booting XIP encrypted image (BEE user keys) unsigned (RT10xx)
	6.2.3.6 Booting XIP encrypted image (BEE user keys) authenticated (RT10xx)
	6.2.3.7 Booting XIP encrypted image (OTFAD OTPMK) authenticated (RT10xx)
	6.2.3.8 Booting OTFAD encrypted image unsigned with user keys.
	6.2.3.9 Booting OTFAD encrypted image authenticated with user keys
	6.2.3.10 Booting IEE encrypted image unsigned (RT116x/7x)
	6.2.3.11 Booting IEE encrypted image authenticated (RT116x/7x)

	6.2.4 Creating/Customizing DCD files

	6.3 RT118x device workflow
	6.3.1 Preparing source image
	6.3.2 Connecting the board
	6.3.3 Booting images
	6.3.3.1 Booting unsigned image
	6.3.3.2 Booting signed image
	6.3.3.3 Booting encrypted (AHAB) image
	6.3.3.4 Booting OTFAD encrypted image
	6.3.3.5 Booting IEE encrypted
	6.3.3.6 Booting multicore images
	6.3.3.7 Life cycle
	6.3.3.8 Firmware version

	6.4 LPC55(S)0x/1x/2x/6x device workflow
	6.4.1 Preparing source image
	6.4.1.1 Image running from internal flash

	6.4.2 Connecting the board
	6.4.3 Booting images
	6.4.3.1 Security levels
	6.4.3.2 Booting Plain/Plain with CRC image
	6.4.3.3 Booting signed or PRINCE encrypted image
	6.4.3.4 PUF KeyStore
	6.4.3.4.1 How to erase KeyStore (example for LPC55S69)
	6.4.3.4.2 How to update CFPA page (example for LPC55S69)

	6.5 LPC55(S)3x device workflow
	6.5.1 Preparing source image
	6.5.2 Connecting the board
	6.5.3 Booting images
	6.5.3.1 Booting plain image or plain with CRC image
	6.5.3.2 Booting signed image
	6.5.3.3 Booting encrypted image
	6.5.3.4 Test life cycle
	6.5.3.5 Life cycle

	6.6 RTxxx device workflow
	6.6.1 Preparing source image
	6.6.1.1 Image running in external flash
	6.6.1.2 Image running in internal RAM

	6.6.2 Connecting the board
	6.6.3 Booting images
	6.6.3.1 Booting a plain/plain with CRC image
	6.6.3.2 Booting signed image using shadow registers
	6.6.3.3 Booting OTFAD encrypted image using shadow registers
	6.6.3.4 Booting signed/encrypted image – burn fuses
	6.6.3.5 Securing the processor
	6.6.3.6 Device HSM provisioning

	6.7 KW45xx/K32W1xx device workflow
	6.7.1 Preparing source image
	6.7.2 Connecting the board
	6.7.3 Booting images
	6.7.3.1 Booting plain image or plain with CRC image
	6.7.3.2 Booting signed image
	6.7.3.3 Booting PRINCE encrypted image
	6.7.3.4 Life cycle

	6.8 RW61x device workflow
	6.8.1 Preparing source image
	6.8.2 Connecting the board
	6.8.3 Shadow registers for fuses via debug probe
	6.8.4 Booting images
	6.8.4.1 Booting plain image or plain with CRC image
	6.8.4.2 Booting signed image
	6.8.4.3 Booting encrypted image
	6.8.4.4 Life cycle
	6.8.4.5 Device HSM and CUST_MK_SK

	6.9 MCX Nx4x/A14x/A15x device workflow
	6.9.1 Preparing source image
	6.9.2 Connecting the board
	6.9.3 Booting images
	6.9.3.1 Booting plain image or plain with CRC image
	6.9.3.2 Booting signed image
	6.9.3.3 Booting encrypted image
	6.9.3.4 Life cycle
	6.9.3.5 Test life cycle

	6.10 Smart Card trust provisioning workflow
	6.10.1 Preparation of OEM-specific inputs
	6.10.2 Configuration of Smart Card at OEM
	6.10.3 Testing the OEM configuration
	6.10.4 Preparation of the final data for factory
	6.10.5 Factory: Manufacturing process
	6.10.6 Audit log verification at OEM side
	6.10.7 Device identity and cloud service provider registration
	6.10.7.1 Configure device identity
	6.10.7.2 Extract certificates from the audit log package
	6.10.7.3 Deploy certificates

	6.11 Debug authentication
	6.11.1 Example of access rights to debug domains

	6.12 Signature provider workflow
	6.12.1 Run the server
	6.12.1.1 Set up in the SEC tool

	7 Command-line operations
	7.1 Build
	7.1.1 Build arguments

	7.2 Write
	7.2.1 Write arguments

	7.3 Generate keys
	7.3.1 Generate keys arguments

	7.4 Manufacture
	7.4.1 Manufacture arguments

	7.5 Command-line examples
	7.6 Command-line tools

	8 Troubleshooting
	8.1 Windows
	8.2 Linux
	8.3 Mac OS X
	8.4 i.MX RTxxx
	8.5 i.MX RT1024
	8.6 i.MX RT1015-EVK / Mac OS X / UART
	8.7 i.MX RT1060-EVK / Mac OS X / UART
	8.8 Bootable image as source for build
	8.9 Workspace compatibility
	8.10 Debug probes
	8.11 Debug authentication

	9 Note about the source code in the document
	10 Revision history
	Legal information
	Contents

v8(public)

		Series		Processor		Boot type												Boot device																Connection								Trust provisioning				Other features

						Plain/
Unsigned		CRC		Signed/
Authenticated		Encrypted
XIP		Encrypted
non XIP		Dual
boot		Internal
FLASH		Serial NOR Flash		Parallel NAND Flash		Serial NAND Flash		SD card/
eMMC		Load to
RAM		Internal
RAM
XIP

Marek Trmac: Not real *boot* device, but either write script or SB file that loads the application to internal RAM and launches it		EVB

Marek Trmac: The board compatible with default settings in SEC tool		USB		UART		I2C		SPI		Smart card

Marek Trmac: This feature is supported only for processors produced after given date (week number)		Device
HSM

Marek Trmac: - "ROM" means device HSM is supported in the ROM code in the processor.
- "FW" means device HSM requires additional firmware. See documentation for details.		Trust
Zone		DCD/
XMCD		OTP/IFR/
PFR config		Shadow
registers		SB editor		Debug
authentication

		KW45xx		KW45B41Z5		Y		Y		Y		PRINCE		N/A		Y		Y		N/A		N/A		N/A		N/A		N/A		Y		N/A		N/A		Y										Y		N/A		IFR/OTP		N/A		Y		Y

				KW45B41Z8		Y		Y		Y		PRINCE		N/A		Y		Y		N/A		N/A		N/A		N/A		N/A		Y		KW45B41Z-EVK		N/A		Y										Y		N/A		IFR/OTP		N/A		Y		Y

		K32W1xx		K32W148		Y		Y		Y		PRINCE		N/A		Y		Y		N/A		N/A		N/A		N/A		N/A		Y		K32W148-EVK		N/A		Y										Y		N/A		IFR/OTP		N/A		Y		Y

		LPC55Sxx		LPC55S69		Y		Y		Y		PRINCE		N/A		N/A		Y		N/A		N/A		N/A		N/A		N/A		N/A

Marek Trmac: Launching is supported only for flash recovery		LPC55S69-EVK		Y		Y		Y		Y		w35/2022		N/A		Y		N/A		PFR		N/A		Y		Y

				LPC55S66		Y		Y		Y		PRINCE		N/A		N/A		Y		N/A		N/A		N/A		N/A		N/A		N/A		N/A		Y		Y		Y		Y		w35/2022		N/A		Y		N/A		PFR		N/A		Y		Y

				LPC55S28		Y		Y		Y		PRINCE		N/A		N/A		Y		N/A		N/A		N/A		N/A		N/A		N/A		LPC55S28-EVK		Y		Y		Y		Y		w35/2022		N/A		N/A		N/A		PFR		N/A		Y		Y

				LPC55S26		Y		Y		Y		PRINCE		N/A		N/A		Y		N/A		N/A		N/A		N/A		N/A		N/A		N/A		Y		Y		Y		Y		w35/2022		N/A		N/A		N/A		PFR		N/A		Y		Y

				LPC55S16		Y		Y		Y		PRINCE		N/A		N/A		Y		N/A		N/A		N/A		N/A		N/A		N/A		LPC55S16-EVK		Y		Y		Y		Y		w49/2022		N/A		Y		N/A		PFR		N/A		Y		Y

				LPC55S14		Y		Y		Y		PRINCE		N/A		N/A		Y		N/A		N/A		N/A		N/A		N/A		N/A		N/A		Y		Y		Y		Y		w49/2022		N/A		Y		N/A		PFR		N/A		Y		Y

				LPC55S06		Y		Y		Y		PRINCE		N/A		N/A		Y		N/A		N/A		N/A		N/A		N/A		N/A		LPC55S06-EVK		N/A		Y		Y		Y		w52/2022		N/A		Y		N/A		PFR		N/A		Y		Y

				LPC55S04		Y		Y		Y		PRINCE		N/A		N/A		Y		N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A		Y		Y		Y		w52/2022		N/A		Y		N/A		PFR		N/A		Y		Y

		LPC55S3x		LPC55S36		Y		Y		Y		PRINCE/IPED		N/A		Y		Y		Y		N/A		N/A		N/A		N/A		Y		LPC55S36-EVK		Y		Y		Y		Y		w1/2023		ROM		Y		N/A		PFR/OTP		N/A		Y		Y

		MCX N10		MCXN546		Y		Y		Y		PRINCE/IPED		N/A		Y		Y		Y		N/A		N/A		N/A				Y		N/A		Y		Y		Y		Y				ROM		Y		N/A		IFR/OTP		N/A		Y		Y

				MCXN547		Y		Y		Y		PRINCE/IPED		N/A		Y		Y		Y		N/A		N/A		N/A				Y		MCX-N5xx-EVK		Y		Y		Y		Y				ROM		Y		N/A		IFR/OTP		N/A		Y		Y

				MCXN946		Y		Y		Y		PRINCE/IPED		N/A		Y		Y		Y		N/A		N/A		N/A				Y		N/A		Y		Y		Y		Y				ROM		Y		N/A		IFR/OTP		N/A		Y		Y

				MCXN947		Y		Y		Y		PRINCE/IPED		N/A		Y		Y		Y		N/A		N/A		N/A				Y		MCX-N9xx-EVK/FRDM		Y		Y		Y		Y				ROM		Y		N/A		IFR/OTP		N/A		Y		Y

		RTxxx		MIMXRT533S/5S		Y		Y		Y		OTFAD		N/A		Y		N/A		Y		N/A		N/A		SD+eMMC		Y				N/A		Y		Y		Y		Y				FW		Y		N/A		OTP		Y		Y		Y

				MIMXRT595S		Y		Y		Y		OTFAD		N/A		Y		N/A		Y		N/A		N/A		SD+eMMC		Y				RT500-EVK		Y		Y		Y		Y				FW		Y		N/A		OTP		Y		Y		Y

				MIMXRT685S		Y		Y		Y		OTFAD		N/A		Y		N/A		Y		N/A		N/A		SD+eMMC		Y				RT600-AUD-EVK		Y		Y		Y		Y				FW		Y		N/A		OTP		Y		Y		Y

		RT10xx		IMXRT1064		Y		N/A		Y		BEE		HAB				N/A		SIP		N/A		N/A		SD		Y

Tonda Tomanec: external RAM supported:
- SEMC SDRAM
- FlexSPI HyperRAM/PSRAM
				RT1064-EVK		Y		Y		N/A		N/A		N/A		N/A		N/A		DCD		OTP		N/A				N/A

				IMXRT1060		Y		N/A		Y		BEE		HAB				N/A		Y				Y		SD		Y

Tonda Tomanec: external RAM supported:
- SEMC SDRAM
- FlexSPI HyperRAM/PSRAM
				RT1060-EVKC		Y		Y		N/A		N/A		N/A		N/A		N/A		DCD		OTP		N/A				N/A

				IMXRT1050		Y		N/A		Y		BEE		HAB		N/A		N/A		Y				Y		SD		Y

Tonda Tomanec: external RAM supported:
- SEMC SDRAM
- FlexSPI PSRAM				RT1050-EVKB		Y		Y		N/A		N/A		N/A		N/A		N/A		DCD		OTP		N/A				N/A

				IMXRT1040		Y		N/A		Y		BEE		HAB				N/A		Y				Y		SD		Y

Tonda Tomanec: external RAM supported:
- SEMC SDRAM
- FlexSPI HyperRAM/PSRAM
				RT1040-EVK		Y		Y		N/A		N/A		N/A		N/A		N/A		DCD		OTP		N/A				N/A

				IMXRT1024		Y		N/A		Y		BEE		N/A		N/A		N/A		SIP				N/A		

Marek Trmac: limitation in flashloader, see troubleshooting		unsigned

Marek Trmac: unsigned only

external RAM supported:
- SEMC SDRAM
- FlexSPI PSRAM				RT1024-EVK		Y		Y		N/A		N/A		N/A		N/A		N/A		DCD		OTP		N/A				N/A

				IMXRT1020		Y		N/A		Y		BEE		HAB		N/A		N/A		Y				Y		SD		Y

Tonda Tomanec: external RAM supported:
- SEMC SDRAM
- FlexSPI PSRAM
				RT1020-EVKB		Y		Y		N/A		N/A		N/A		N/A		N/A		DCD		OTP		N/A				N/A

				IMXRT1015		Y		N/A		Y		BEE		N/A		N/A		N/A		Y		N/A		Y		N/A		unsigned

Marek Trmac: unsigned only
				RT1015-EVK		Y		Y		N/A		N/A		N/A		N/A		N/A				OTP		N/A				N/A

				IMXRT1010		Y		N/A		Y		OTFAD		N/A				N/A		Y		N/A		N/A		N/A		Y

Marek Trmac: unsigned and authenticated				RT1010-EVKB		Y		Y		N/A		N/A		N/A		N/A		N/A				OTP		N/A				N/A

		RT11xx		IMXRT1189		Y		N/A		Y		OTFAD, IEE		AHAB		Y		N/A		Y				Y		SD+eMMC		Y

Tonda Tomanec: external RAM supported:
- SEMC SDRAM
- FlexSPI HyperRAM				RT1180-EVK		Y		Y		N/A		N/A		N/A		N/A		N/A		XMCD		OTP		N/A		N/A		Y

				IMXRT1187		Y		N/A		Y		OTFAD, IEE		AHAB		Y		N/A		Y				Y		SD+eMMC		Y

Tonda Tomanec: external RAM supported:
- SEMC SDRAM
- FlexSPI HyperRAM				RT1180A-EVK		Y		Y		N/A		N/A		N/A		N/A		N/A		XMCD		OTP		N/A		N/A		Y

				IMXRT1182		Y		N/A		Y		OTFAD, IEE		AHAB		Y		N/A		Y		N/A		Y		SD+eMMC		Y

Tonda Tomanec: external RAM supported:
- FlexSPI HyperRAM				N/A		N/A		Y		N/A		N/A		N/A		N/A		N/A		XMCD		OTP		N/A		N/A		Y

				IMXRT1181		Y		N/A		Y		OTFAD, IEE		AHAB		Y		N/A		Y		N/A		Y		SD+eMMC		Y

Tonda Tomanec: external RAM supported:
- FlexSPI HyperRAM				RT1180-144		N/A		Y		N/A		N/A		N/A		N/A		N/A		XMCD		OTP		N/A		N/A		Y

				IMXRT1176		Y		N/A		Y		OTFAD, IEE		HAB		Y		N/A		Y		Y		Y		SD+eMMC		Y

Tonda Tomanec: external RAM supported:
- SEMC SDRAM
- FlexSPI HyperRAM
		

Marek Trmac: Not real *boot* device, but either write script or SB file that loads the application to internal RAM and launches it		RT1170-EVKB		Y		Y		N/A		N/A		N/A		N/A		N/A		both		OTP		N/A

				IMXRT1171/2/3/5		Y		N/A		Y		OTFAD, IEE		HAB		Y		N/A		Y		Y		Y		SD+eMMC		Y

Tonda Tomanec: external RAM supported:
- SEMC SDRAM
- FlexSPI HyperRAM
				

Marek Trmac: The board compatible with default settings in SEC tool		N/A		Y		Y		N/A		N/A		N/A		N/A		N/A		both		OTP		N/A

				IMXRT1166		Y		N/A		Y		OTFAD, IEE		HAB		Y		N/A		Y		Y		Y		SD+eMMC		Y

Tonda Tomanec: external RAM supported:
- SEMC SDRAM
- FlexSPI HyperRAM				RT1160-EVK		Y		Y		N/A		N/A		N/A		N/A		N/A		both		OTP		N/A

				IMXRT1165		Y		N/A		Y		OTFAD, IEE		HAB		Y		N/A		Y		Y		Y		SD+eMMC		Y

Tonda Tomanec: external RAM supported:
- SEMC SDRAM
- FlexSPI HyperRAM
		

Marek Trmac: Launching is supported only for flash recovery		N/A		Y		Y		N/A		N/A		N/A		N/A		N/A		both		OTP		N/A

		RW61x		RW610		Y		Y		Y		IPED		N/A		Y		N/A		Y		N/A		N/A		N/A		N/A		Y		N/A		Y		Y		Y		Y		N/A		ROM		Y		N/A		OTP		Y

Marek Trmac: via debug probe		Y		Y

				RW612		Y		Y		Y		IPED		N/A		Y		N/A		Y		N/A		N/A		N/A		N/A		Y		RD-RW61X-*		Y		Y		Y		Y		N/A		ROM		Y		N/A		OTP		Y		Y		Y

		LPC55xx		LPC5502/4/6		Y		Y		N/A		N/A		N/A		N/A		Y		N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A		Y		Y		Y		N/A		N/A		N/A		N/A		PFR		N/A		N/A		N/A

				LPC5512/4/6		Y		Y		N/A		N/A		N/A		N/A		Y		N/A		N/A		N/A		N/A		N/A		N/A		N/A		Y		Y		Y		Y		N/A		N/A		N/A		N/A		PFR		N/A		N/A		N/A

				LPC5526/8		Y		Y		N/A		N/A		N/A		N/A		Y		N/A		N/A		N/A		N/A		N/A		N/A		N/A		Y		Y		Y		Y		N/A		N/A		N/A		N/A		PFR		N/A		N/A		N/A

		LPC553x		LPC5534/6		Y		Y		N/A		N/A		N/A		Y		Y		Y		N/A		N/A		N/A		N/A		N/A		N/A		Y		Y		Y		Y		N/A		N/A		N/A		N/A		PFR/OTP		N/A		N/A		N/A

		MCX A10		MCXA142/43/52		Y		Y		N/A		N/A		N/A		Y

Marek Trmac: swap																										

Marek Trmac: This feature is supported only for processors produced after given date (week number)		

Marek Trmac: - "ROM" means device HSM is supported in the ROM code in the processor.
- "FW" means device HSM requires additional firmware. See documentation for details.								

Marek Trmac: via debug probe		Y		N/A		N/A		N/A		N/A		N/A		N/A		N/A		Y		Y		Y		Y		N/A		N/A		N/A		N/A		PFR(CMPA)		N/A		N/A		N/A

				MCXA153		Y		Y		N/A		N/A		N/A		Y		Y		N/A		N/A		N/A		N/A		N/A		N/A		FRDM-MCXA153		Y		Y		Y		Y		N/A		N/A		N/A		N/A		PFR(CMPA)		N/A		N/A		N/A

		Legend:

		Y		The feature supported for the processor

		N/A		The feature cannot be supported for the processor (or not planned)

		(blank)		The feature is not supported in the current version, but can be considered for next version

		other text		The feature is supported, the cell provides additional info or limitations

